首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

2.
The characteristics of intracellular Ca2+ transient induced by vasopressin and bombesin in aortic smooth muscle cells were studied using flow cytometric analysis of indo-1 loaded cells. The two hormones induced a rapid and transient rise in [Ca2+]i. This Ca2+ transient was independent of the presence of extracellular Ca2+. Addition of bombesin to cells that have already been stimulated by vasopressin (or conversely the addition of vasopressin to bombesin-stimulated cells) results in a second Ca2+ transient that has a smaller amplitude. This transient is the same when the external Ca2+ concentration is lowered from 1.8 mM to 50 nM, suggesting that the agonist-sensitive pool reloaded using the Ca2+ that has been previously released into the cytoplasm. Intracellular Ca2+ pools that have been depleted by a prolonged incubation of the cells in a low Ca2+ medium can be refilled by shifting cells to a high Ca2+ medium. The reloading was analyzed in detail and found to be a slow process. It is hardly affected by Ni2+ or by (-)D888, a potent inhibitor of the voltage-dependent Ca2+ channels. It is accelerated when Ca2+ uptake by the Na+/Ca2+ exchange system is stimulated. The results suggest that Ca2+ homeostasis in aortic smooth muscle cells is achieved using mechanisms that are distinct from those operating in various acini and in striated muscles.  相似文献   

3.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

4.
The effects of different concentrations of the fluorometric Ca2+ probes, fura-2 and indo-1, on Ca2+ transients in cultured rat aortic smooth muscle cells were examined. When stimulated with the agonists, angiotensin II and arginine vasopressin, cells incubated with low concentrations of fura-2 or indo-1 (less than 1 microM) produced Ca2+ transients characterized by a small increase followed by a dramatic decrease in fluorescence below the original baseline. This effect of agonists was concentration-dependent, reversible, and blocked by receptor antagonists. In contrast to the agonists, stimulation of Ca2+ transients with depolarizing concentrations of K+ or with caffeine did not produce decreases in fluorescence and Ca2+ levels at any loading concentration of probe. The decrease in Ca2+ observed with agonists was dependent on the presence of extracellular Na+. These data suggest that under certain loading conditions, fluorescent Ca2+ indicators measure agonist-stimulated Ca2+ efflux mediated by a Na+/Ca2+ exchange mechanism.  相似文献   

5.
The mechanism by which human alpha-thrombin activates the Na+/H+ exchanger was studied in cultured neonatal rat aortic smooth muscle cells. Thrombin (0.4 unit/ml) caused a rapid cell acidification followed by a slow, amiloride-inhibitable alkalinization (0.10-0.14 delta pHi above base line). In protein kinase C down-regulated cells (exposed to phorbol 12-myristate 13-acetate for 24 or 72 h), the delta pHi induced by thrombin was only partially attenuated. This protein kinase C-independent activation of the Na+/H+ exchanger was blocked by pertussis toxin (islet activating protein (IAP)), reducing delta pHi by 50%. IAP did not directly inhibit Na+/H+ exchange activity as assessed by the response to intracellular acid loading. Thrombin also stimulated arachidonic acid release by 2.5 fold and inositol trisphosphate release by 6.2 fold. IAP inhibited both of these activities by 50-60%. Intracellular Ca2+ chelation with 120 microM quin2 prevented the thrombin-induced Ca2+ spike, inhibited thrombin-induced arachidonic acid release by 75%, and inhibited thrombin-induced activation of the Na+/H+ exchanger in protein kinase C-deficient cells by 65%. Increased intracellular [Ca2+] alone was not sufficient to activate the Na+/H+ exchanger, since ionomycin (0.3-1.5 microM) failed to elevate cell pH significantly. 10 microM indomethacin inhibited thrombin-induced delta pHi in both control and protein kinase C down-regulated cells by 30-50%. Thus, thrombin can activate the Na+/H+ exchanger in vascular smooth muscle cells by a Ca2+-dependent, pertussis toxin-sensitive pathway which does not involve protein kinase C.  相似文献   

6.
Evidence is presented suggesting that the Na+/H+ antiporter activity of aortic smooth muscle cells is stimulated by protein kinase C activation. However, once the transporter has been activated, inhibitors of protein kinase C are not effective, supporting a model in which the Na+/H+ antiporter conserves memory of its activation by protein kinase C.  相似文献   

7.
The effect of arginine vasopressin (AVP) on Na+ kinetics was examined in cultured rat vascular smooth muscle cells (VSMC) and rat renal papillary collecting tubule cells (RPCT) by the direct measurement of intracellular sodium concentration [(Na+]i) using fluorescence dye; SBFI. AVP increased [Na+]i in a dose-dependent manner at a concentration of 10(-9) M or higher in rat VSMC but did not affect [Na+]i in rat RPCT. The calcium (Ca2+)-free solution completely blocked the increasing effect of AVP on [Na+]i in rat VSMC. A Ca2+ ionophore, ionomycin (1-2 x 10(-6) M) increased [Na+]i both in rat VSMC and RPCT. The Ca2(+)-free solution abolished the ionomycin-increased [Na+]i both in rat VSMC and RPCT. These results therefore indicate that after binding the V1 receptor AVP increases [Na+]i mediated through an increase in cellular Ca2+ uptake in VSMC.  相似文献   

8.
Net H+ fluxes across the plasma membrane of Chinese hamster lung fibroblasts (CC139) were monitored by pH-stat titration. Na+-depleted cells release H+ upon addition of Na+. Conversely Na+- or Li+-loaded cells take up H+ from the medium when shifted to a Na+,Li+-free medium. This reversible Na+ (or Li+)-dependent H+ flux is inhibited by amiloride and does not occur in digitonin-permeabilized cells. A similar Na+/H+ exchanger was identified in vascular smooth muscle cells, corneal and aortic endothelial cells, lens epithelial cells of bovine origin, and human platelets. Kinetic studies carried out with CC139 cells indicate the following properties: 1) half-saturation of the system is observed at pH = 7.8, in the absence of Na+; 2) external Na+ stimulates H+ release and inhibits H+ uptake in a competitive manner (Ki = 2-3 mM); 3) amiloride is a competitive inhibitor for Na+ (Ki congruent to 1 microM) and a noncompetitive inhibitor for H+; 4) a coupling ratio of 1.3 +/- 0.3 for the H+/Li+ exchange suggests a stoichiometry of 1:1. We conclude that CC139 cells possess in their plasma membrane a reversible, electroneutral, and amiloride-sensitive Na+/H+ antiporter, with two distinct and mutually exclusive binding sites for Na+ and H+. The rapid stimulation of the Na+/H+ antiporter in G0/G1-arrested CC139 cells upon addition of growth factors, together with the fact that intracellular H+ concentration is, under physiological conditions, around the apparent K0.5 of the system, strongly suggests a key role of this antiport in pHi regulation and mitogen action.  相似文献   

9.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

10.
The most active component in smooth muscle contraction, isolated from the whole venom of the marine snail Conus tessulatus, has a molecular mass of about 55 kDa. The toxin protein, tessulatus toxin, appeared to be constituted by two distinct polypeptide bands of 26 kDa and 29 kDa. The pure toxin caused a marked contraction of both guinea-pig ileum and rabbit aorta at nanomolar concentrations. Tessulatus-toxin-induced contraction was indirectly prevented by classical inhibitors of the voltage-dependent Ca2+ channel. Tessulatus toxin caused a large increase in the initial rate of 45Ca2+ uptake by cardiac cells. This uptake was insensitive to Ca2+ channel blockers at concentrations 100-1000 fold higher than those known to block voltage-dependent Ca2+ channels in these cells. Voltage clamp experiments have confirmed that tessulatus toxin was not directly active on the Ca2+ current. Tessulatus-toxin-stimulated 45Ca2+ influx was inhibited by dichlorobenzamil and suppressed when Na+ was substituted by Li+, indicating that the toxin acted via activation of the Na+/Ca2+ exchange system in cardiac cells. Activation by tessulatus toxin of the Na+/Ca2+ exchange system occurred via a toxin-stimulated Na+ entry into cardiac cells and was observed in the same range of toxin concentration which produced 45Ca2+ entry. The Na+ entry system that was activated by tessulatus toxin was insensitive to classic inhibitors of known Na+ entry systems in cardiac cells. Possible mechanisms by which tessulatus toxin induced Na+ entry into cardiac cells and contractions in smooth muscles are discussed. Tessulatus toxin is cytotoxic when used at high concentrations.  相似文献   

11.
The cyclic undecapeptide cyclosporine A (CsA) is a potent immunosuppressive agent that inhibits the initial activation of T lymphocytes. This agent appears to be most effective in blocking the action of mitogens such as concanavalin A and the calcium ionophore A23187, which cause an influx of Ca2+, but not those that may act by alternate mechanisms. These observations suggest that CsA may block a Ca2+-dependent step in T cell activation. We have shown that stimulation of the T3-T cell receptor complex-associated Ca2+ transporter activates the Na+/H+ antiport (Rosoff, P. M., and L. C. Cantley, 1985, J. Biol. Chem., 260: 14053-14059). The tumor-promoting phorbol esters, which are co-mitogenic for T cells, activate the exchanger by a separate pathway which is mediated by protein kinase C. Both the rise in intracellular Ca2+ and intracellular pH may be necessary for the successful triggering of cellular activation. In this report we show that CsA blocks the T3-T cell receptor-stimulated, Ca2+ influx-dependent activation of Na+/H+ exchange, but not the phorbol ester-mediated pathway in a transformed human T cell line. CsA inhibited mitogen-stimulation of interleukin-2 production in a separate cell line. CsA also inhibited vasopressin stimulation of the antiporter in normal rat kidney fibroblasts, but had no effect on serum or 12-O-tetradecanoyl phorbol 13-acetate stimulation. CsA did not affect serum or vasopressin or serum stimulation of normal rat kidney cell proliferation. CsA also had no effect on lipopolysaccharide or phorbol ester stimulation of Na+/H+ exchange activity or induction of differentiation in 70Z/3 pre-B lymphocytes in which these events are initiated by the protein kinase C pathway. These data suggest that mechanisms of activation of Na+/H+ exchange that involve an elevation in cytosolic Ca2+ are blocked by CsA but that C kinase-mediated regulation is unaffected. The importance of the Na+/H+ antiport in the regulation of growth and differentiation of T cells is discussed.  相似文献   

12.
The role of Ca2+/calmodulin-dependent processes in the activation of the Na+/H+ antiport of primary cultures of rat aortic smooth muscle was studied using 22Na+ uptake and measurement of intracellular pH (pHi) with the fluorescent pH dye 2',7'-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein. Antiport activation following exposure to serum and by the induction of an intracellular acidosis could be markedly attenuated by calmodulin antagonists. Ionomycin also transiently elevated pHi and 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ influx, effects consistent with activation of the antiport; these effects were abolished in cells exposed to calmodulin antagonists or [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. Activation of the antiport following intracellular acidosis was markedly affected by cellular ATP depletion. A comparison of the abilities of control and 2-deoxy-D-glucose-treated cells to increase 5-(N-ethyl-N-isopropyl)amiloride-sensitive 22Na+ influx in response to graded acidifications indicated that attenuation of Na+/H+ antiport activity was due to both a shift of its pHi dependence and to a reduction in maximal activity. The results suggest that the Na+/H+ antiport of rat aortic smooth muscle is dependent on Ca2+/calmodulin-dependent processes, presumably phosphorylation, which influences its activity by modulating (i) an intracellular proton dependent regulatory mechanism (allosteric site) and (ii) the maximum activity of the antiport.  相似文献   

13.
We previously observed Ca2+ release from intracellular Ca2+ stores caused by reduction in extracellular Na+ concentration ([Na+]o). The purpose of this study was to determine whether lowering [Na+]o can elicit Ca2+ release from Ca2+ stores via the Na+/Ca2+ exchanger and to elucidate the mechanisms related to the Ca2+ release pathway in cultured longitudinal smooth muscle cells obtained from guinea pig ileum. Low [Na+]o-induced Ca2+ release was inhibited by antisense oligodeoxynucleotides for Na+/Ca2+ exchanger type 1 (anti-NCX). Application of anti-NCX to cells attenuated both the number of Ca2+ responding cells and the expression of the exchanger. Moreover, microinjection of heparin, a blocker of inositol 1,4,5-trisphosphate (IP3) receptors, into the cells inhibited low [Na+]o-induced Ca2+ release. These findings suggest that low [Na+]o-induced Ca2+ release occurs through an IP3-induced Ca2+ release mechanism due to changes in the Ca2+ flux regulated by the Na+/Ca2+ exchanger.  相似文献   

14.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

15.
16.
The Na+/H+ antiporter is a ubiquitous transmembrane protein that plays a vital role in cell growth via regulation of intracellular Na+ and H+. In vascular smooth muscle cells (VSMC), vasoconstrictors and mitogens rapidly activate the antiporter, suggesting that both should have growth promoting effects. Indeed, angiotensin II increases VSMC protein and volume (hypertrophy), but does not increase cell number (hyperplasia). In the present work we investigated whether alterations in the steady state levels of Na+/H+ antiporter mRNA might differentiate these VSMC growth responses. Differences in function of the Na+/H+ antiporter appeared likely because exposure of growth-arrested VSMC for 24 h to 100 nM angiotensin II decreased intracellular pH from 7.08 to 6.99, while exposure to 10% calf serum caused an increase to 7.18. Simultaneous measurement of Na+/H+ antiporter mRNA levels, using the human c28 cDNA, revealed a 25-fold increase in response to serum (as well as to platelet-derived and fibroblast growth factors), but no change in response to angiotensin II. All agonists increased mRNA levels of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase approximately 3-fold. The increase in Na+/H+ antiporter mRNA induced by serum was first apparent within 2 h and peaked 24 h after treatment. These results demonstrate that expression of Na+/H+ antiporter mRNA in VSMC is dependent on growth state: hyperplastic agonists (serum, platelet-derived and fibroblast growth factor) increase the steady state levels of Na+/H+ antiporter mRNA while a hypertrophic agonist (angiotensin II) does not.  相似文献   

17.
Various tumor promoters (TPA, lyngbyatoxin and aplysiatoxin) and diacylglycerol induced cytoplasmic alkalinization of sea urchin eggs independently of intracellular Ca2+ release. This response stimulated protein synthesis and was blocked by amiloride or a lack of extracellular Na+, procedures which inhibit the Na+/H+ antiporter. These results suggest that the antiporter which is responsible for cytoplasmic alkalinization in sea urchin eggs is activated directly or indirectly by protein kinase C in a Ca2+-independent manner.  相似文献   

18.
Liu Y  Taylor CW 《FEBS letters》2006,580(17):4114-4120
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.  相似文献   

19.
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.  相似文献   

20.
Endothelin stimulates Na+/H+ exchange in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The effect of endothelin (ET) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC), was investigated using a fluorescent pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). ET at concentrations of over 10(-9) M caused dose-dependent transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchange. The alkalization induced by ET was Ca2(+)-dependent and was inhibited by a calcium channel blocker, nicardipine. Pretreatment with H-7, an inhibitor of protein kinase C, also inhibited the ET-induced cell alkalization. These results indicate that ET stimulates Na+/H+ exchange, resulting in alkalization of VSMC and that this ET-induced cell-alkalization is probably linked to Ca2+ influx and activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号