首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the influence of changes in lipid organization on the planar distribution of two classes of membrane proteins: integral proteins which have amino groups exposed to labelling at the membrane surface by the biotin-avidin-ferritin procedure, and those proteins which penetrate the lipid bilayer sufficiently to be seen as intramembranous particles by freeze-fracture electron-microscopy.When the membranes are examined at temperatures below the lipid phase transition, the first class is dispersed and the second patched. At temperatures in the middle of the transition range, both classes are patched. At temperatures just above the phase transition the first class is dispersed and the second patched, and at temperatures well above the transition both classes are dispersed. Freeze-etch studies of avidin-ferritin-labeled membranes confirmed that the distribution seen by the labeling and the freeze-fracture techniques coexist in single membranes. Thus, there exist two distinct classes of membrane proteins with differential organizational responses to the lipid state.  相似文献   

2.
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.  相似文献   

3.
Regulation of transbilayer plasma membrane phospholipid asymmetry   总被引:10,自引:0,他引:10  
Lipids in biological membranes are asymmetrically distributed across the bilayer; the amine-containing phospholipids are enriched on the cytoplasmic surface of the plasma membrane, while the choline-containing and sphingolipids are enriched on the outer surface. The maintenance of transbilayer lipid asymmetry is essential for normal membrane function, and disruption of this asymmetry is associated with cell activation or pathologic conditions. Lipid asymmetry is generated primarily by selective synthesis of lipids on one side of the membrane. Because passive lipid transbilayer diffusion is slow, a number of proteins have evolved to either dissipate or maintain this lipid gradient. These proteins fall into three classes: 1) cytofacially-directed, ATP-dependent transporters ("flippases"); 2) exofacially-directed, ATP-dependent transporters ("floppases"); and 3) bidirectional, ATP-independent transporters ("scramblases"). The flippase is highly selective for phosphatidylserine and functions to keep this lipid sequestered from the cell surface. Floppase activity has been associated with the ABC class of transmembrane transporters. Although they are primarily nonspecific, at least two members of this class display selectivity for their substrate lipid. Scramblases are inherently nonspecific and function to randomize the distribution of newly synthesized lipids in the endoplasmic reticulum or plasma membrane lipids in activated cells. It is the combined action of these proteins and the physical properties of the membrane bilayer that generate and maintain transbilayer lipid asymmetry.  相似文献   

4.
The roles of lipid unsaturation and lipid-protein interactions in maintaining the physiologically required membrane dynamics were investigated in a cyanobacterium strain, Synechocystis PCC 6803. The specific effects of lipid unsaturation on the membrane structure were addressed by the use of desaturase-deficient (desA(-)/desD(-)) mutant cells (which contain only oleic acid as unsaturated fatty acid species) of Synechocystis PCC 6803. The dynamic properties of the membranes were determined from the temperature dependence of the symmetric CH(2) stretching vibration frequency, which is indicative of the lipid fatty acyl chain disorder. It was found that a similar membrane dynamics is maintained at any growth temperature, in both the wild-type and the mutant cell membranes, with the exception of mutant cells grown at the lower physiological temperature limit. It seems that in the physiological temperature range the desaturase system of the cells can modulate the level of lipid desaturation sufficiently to maintain similar membrane dynamics. Below the range of normal growth temperatures, however, the extent of lipid disorder was always higher in the thylakoid than in the cytoplasmic membranes prepared from the same cells. This difference was attributed to the considerable difference in protein-to-lipid ratio in the two kinds of membranes, as determined from the ratio of the intensities of the protein amide I band and the lipid ester C&z.dbnd6;O vibration. The contributions to the membrane dynamics of an ab ovo present 'structural' lipid disorder due to the protein-lipid interactions and of a thermally induced 'dynamic' lipid disorder could be distinguished.  相似文献   

5.
Frost A 《Current biology : CB》2011,21(19):R811-R813
Proteins involved in membrane traffic must distinguish between different classes of vesicles. New work now shows that α-synuclein and ALPS motifs represent two extreme types of amphipathic helix that are tuned to detect both the curvature of transport vesicles as well as their bulk lipid content.  相似文献   

6.
The plasma membrane of Mycobacterium sp. is the site of synthesis of several distinct classes of lipids that are either retained in the membrane or exported to the overlying cell envelope. Here, we provide evidence that enzymes involved in the biosynthesis of two major lipid classes, the phosphatidylinositol mannosides (PIMs) and aminophospholipids, are compartmentalized within the plasma membrane. Enzymes involved in the synthesis of early PIM intermediates were localized to a membrane subdomain termed PMf, that was clearly resolved from the cell wall by isopyknic density centrifugation and amplified in rapidly dividing Mycobacterium smegmatis. In contrast, the major pool of apolar PIMs and enzymes involved in polar PIM biosynthesis were localized to a denser fraction that contained both plasma membrane and cell wall markers (PM-CW). Based on the resistance of the PIMs to solvent extraction in live but not lysed cells, we propose that polar PIM biosynthesis occurs in the plasma membrane rather than the cell wall component of the PM-CW. Enzymes involved in phosphatidylethanolamine biosynthesis also displayed a highly polarized distribution between the PMf and PM-CW fractions. The PMf was greatly reduced in non-dividing cells, concomitant with a reduction in the synthesis and steady-state levels of PIMs and amino-phospholipids and the redistribution of PMf marker enzymes to non-PM-CW fractions. The formation of the PMf and recruitment of enzymes to this domain may thus play a role in regulating growth-specific changes in the biosynthesis of membrane and cell wall lipids.  相似文献   

7.
The human erythrocyte membrane skeleton may be an ionic gel   总被引:3,自引:0,他引:3  
In the first paper in this series (Stokke et al. Eur Biophys J 1986, 13:203-218) we developed the general theory of the mechanochemical properties and the elastic free energy of the protein gel--lipid bilayer membrane model. Here we report on an extensive numerical analysis of the human erythrocyte shapes and shape transformations predicted by this new cell membrane model. We have calculated the total elastic free energy of deformation of four different cell shape classes: disc-shaped cells, cup-shaped cells, crenated cells, and cells with membrane invaginations. We find that which of these shape classes is favoured depends strongly on the spectrin gel osmotic tension, IIGu, and the surface tensions, IIEu and IIPu, of the extracellular and protoplasmic halves of the membrane lipid bilayer, respectively. For constant ratio IIEu/IIPu greater than O large negative or positive values of IIGu favour respectively the crenated and invaginated cell shape classes. For small absolute values of IIGu, IIEu, and IIPu, biconcave or cup-shaped cells are the stable ones. Our numerical analysis shows that the higher the membrane skeleton compressibility is, the smaller are the values of IIGu needed to induce cell shape transformation. We find that the stable and metastable shapes of discocytes and stomatocytes generally depend both on the shape of the stressfree membrane skeleton and the membrane skeleton compressibility.  相似文献   

8.
Studies of the diffusion of proteins and lipids in the plasma membrane of cells have long pointed to the presence of membrane domains. A major challenge in the field of membrane biology has been to characterize the various cellular structures and mechanisms that impede free diffusion in cell membranes and determine the consequences that membrane compartmentalization has on cellular biology. In this review, we will provide a brief summary of the classes of domains that have been characterized to date, focusing on recent efforts to identify the properties of lipid rafts in cells through measurements of protein and lipid diffusion.  相似文献   

9.
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes   总被引:2,自引:0,他引:2  
G Li  P F Knowles  D J Murphy  I Nishida  D Marsh 《Biochemistry》1989,28(18):7446-7452
Lipid-protein interactions in thylakoid membranes, and in the subthylakoid membrane fractions containing either photosystem 1 or photosystem 2, have been studied by using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted membrane lipids interacting directly with the integral membrane proteins. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with the membrane proteins and to determine the selectivity between the different lipid classes for the lipid-protein interaction. The fractions of motionally restricted lipid in the thylakoid membrane are 0.36, 0.39, and 0.53, for the spin-labeled monogalactosyldiacylglycerol, phosphatidylcholine, the phosphatidylglycerol, respectively. Spin-labeled monogalactosyldiacylglycerol exhibits very little preferential interaction over phosphatidylchline, which suggests that part of the role of monogalactosyldiacylglycerol in thylakoid membranes is structural, as is the case for phosphatidylcholine in mammalian membranes. Spin-labeled phosphatidylglycerol shows a preferential interaction over the corresponding monogalactosyldiacylglycerol and phosphatidylcholine analogues, in contrast to the common behavior of this lipid in mammalian systems. This pattern of lipid selectivity is preserved in both the photosystem 1 and photosystem 2 enriched subthylakoid membrane fractions.  相似文献   

10.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Mero-cyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both  相似文献   

11.
The interaction of phosphatidylserine dispersions with "hydrophobic", organic cations (acetylcholine, tetraethylammonium ion) is compared with that of simple inorganic cations (Na+, Ca2+); differences in the hydration properties of the two classes of ions exist in the bulk phase as evident from spin-lattice relaxation time T1 measurements. It is shown that the reaction products (cation-phospholipid) differ markedly in their physicochemical behaviour. With increasing concentration both classes of ions reduce the zota-potential of phosphatidylserine surfaces, the monovalent inorganic cations being only slightly more effective than the hydrophobic cations. Inorganic cations cause precipitation of the lipid once the surface charge of the bilayer is reduced to a certain threshold value. This is not the case with the organic cations. The difference is probably associated with the different hydration properties of the resulting complexes. Thus binding of Ca2+ causes displacement of water of hydration and formation of an anhydrous, hydrophobic calcium-phosphatidylserine complex which is insoluble in water, whereas the product of binding of the organic cations is hydrated, hydrophilic and water soluble. The above findings are consistent with NMR results which show that the phosphodiester group is involved in the binding of both classes of cations as well as being the site of the primary hydration shell. Besides affecting interbilayer membrane interactions such as those involved in cell adhesion and membrane fusion, the binding of both classes of cation can affect the molecular packing within a bilayer.  相似文献   

12.
One aspect of mammalian post-testicular sperm maturation is the progressive change in their plasma membrane lipid composition. These modifications in lipids allow sperm cells to fuse with oocytes during fertilization. A significant share of these sperm lipid changes occurs during their descent through the epididymal tubule. It then continues within the female genital tract during the capacitation process, an essential prerequisite for acrosomic reaction and hence fertilization. This review presents what is known concerning the sperm plasma membrane lipid changes during epididymal maturation in various mammalian models. In the first section, after a brief presentation of the classic eukaryotic cell plasma membrane lipid organization, the emphasis is on the particularities of sperm plasma membrane lipids. The second section presents the different changes occurring in the three major classes of lipids (i.e. phospholipids, sterols and fatty acids) during the sperm’s epididymal descent. The final section briefly describes the mechanisms by which these lipid changes might happen in the epididymal lumen environment. The role played by lipid-rich vesicles secreted by the epididymal epithelium via apocrine secretory processes is highlighted.  相似文献   

13.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

14.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

15.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

16.
Two of the physiologically important processes that take place in biological membranes are the partitioning of water-soluble proteins into the membrane and the sequestering of specific transmembrane proteins into membrane microdomains or 'rafts'. Although these two processes often involve different classes of protein, recent biophysical studies indicate that they both strongly depend on the structural and elastic properties of the membrane bilayer. That is, both the partitioning of peptides into membranes and the distribution of transmembrane peptides in the plane of the membrane are modulated by physical properties of the lipid bilayer that are controlled by cholesterol content and the composition of the phospholipid hydrocarbon chain.  相似文献   

17.
Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.  相似文献   

18.
The best understood consequence of the collapse of lipid asymmetry is exposure of phosphatidylserine (PS) in the external leaflet of the plasma membrane bilayer, where it is known to serve at least two major functions: providing a platform for development of the blood coagulation cascade and presenting the signal that induces phagocytosis of apoptotic cells. Lipid asymmetry is collapsed by activation of phospholipid scramblase(s) that catalyze bidirectional transbilayer movement of the major classes of phospholipid. The protein corresponding to this activity is not yet known. Observations on cells from patients with Scott syndrome, a rare hereditary bleeding disorder resulting from impaired lipid scrambling, have shown that there are multiple activation pathways that converge on scramblase activity.  相似文献   

19.
One major strategy by which plants adapt to temperature change is to decrease the degree of unsaturation of membrane lipids under high temperature and increase it under low temperature. We hypothesize that this strategy cannot be adopted by plants in ecosystems and environments with frequent alterations between high and low temperatures, because changes in lipid unsaturation are complex and require large energy inputs. To test this hypothesis, we used a lipidomics approach to profile changes in molecular species of membrane glycerolipids in two plant species sampled from alpine screes and in another two plant species grown in a growth chamber, with the temperature cycling daily between heat and freezing. We found that six classes of phospholipid and two classes of galactolipid showed significant changes, but the degree of unsaturation of total lipids and of three lysophospholipid classes remained unchanged. This pattern of changes in membrane lipids was distinct from that occurring during slow alterations in temperature. We propose two types of model for the adaptation of plants to temperature change: (1) remodelling of membrane lipids but maintenance of the degree of unsaturation are used to adapt to frequent temperature alterations; and (2) both remodelling and changes in the degree of unsaturation to adapt to infrequent temperature alterations.  相似文献   

20.
Semliki Forest virus was grown in BHK-21 cells. The major classes of phospho-and glycolipids of the virus were analyzed for the compositions of fatty acids, aldehydes, and sphingosine bases, and the major glycerophospholipids were analyzed for the relative proportions of alkenyl-acyl, alkyl-acyl, and diacyl forms. All viral lipid classes proved to be mixtures of several molecular species. Each class contained a characteristic mixture of fatty chains, which was different in all other classes. All viral lipid classes resembled their counterparts of the host plasma membrane and also those of the endoplasmic reticulum. The gangliosides of the virus and the plasma membrane proved to be similar even at the level of individual molecular species. The number of certain lipid molecules in an average virion was less than the number of the protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号