首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously showed that a 9-nucleotide sequence from the 5' leader of the Gtx homeodomain mRNA facilitates translation initiation by base pairing to 18S rRNA. These earlier studies tested the Gtx element in isolation; we now assess the physiological relevance of this element in the context of two natural mRNAs that contain this sequence in their 5' leaders, Gtx itself and FGF2 (fibroblast growth factor 2). 2'-O-Methyl-modified RNA oligonucleotides were employed to block mRNA-rRNA base pairing by targeting either the Gtx-binding site in 18S rRNA or Gtx elements in recombinant mRNAs containing the Gtx or FGF2 5' leaders linked to a reporter cistron. Studies in cell-free lysates and transfected COS-7 cells showed that translation of mRNAs containing the Gtx or FGF2 5' leaders was decreased by > 50% when oligonucleotides targeting either the rRNA or mRNA were used. Specificity was demonstrated by showing that translation of the recombinant mRNAs was unaffected by control oligonucleotides. In addition, the specific oligonucleotides did not affect the translation of recombinant mRNAs in which the Gtx elements were mutated. Experiments performed using constructs containing Gtx and FGF2 5' leader and coding sequences ruled out possible effects of the reporter cistron. Furthermore, two-dimensional gel electrophoresis revealed that the oligonucleotides used in this study had little overall effect on the proteomes of cells transfected with these oligonucleotides. This study demonstrates that mRNA-rRNA base pairing affects the expression of two cellular mRNAs and describes a new approach for investigating putative mRNA-rRNA base pairing interactions in mammalian cells.  相似文献   

2.
Total low molecular weight nuclear RNAs of mouse ascites cells have been labeled in vitro and used as probes to search for complementary sequences contained in nuclear or cytoplasmic RNA. From a subset of hybridizing lmw RNAs, two major species of 58,000 and 35,000 mol. wt. have been identified as mouse 5 and 5.8S ribosomal RNA. Mouse 5 and 5.8S rRNA hybridize not only to 18 and 28S rRNA, respectively, but also to nuclear and cytoplasmic poly(A+) RNA. Northern blot analysis and oligo-dT cellulose chromatography have confirmed the intermolecular base-pairing of these two small rRNA sequences to total poly(A+) RNA as well as to purified rabbit globin mRNA. 5 and 5.8S rRNA also hybridize with positive (coding) but not negative (noncoding) strands of viral RNA. Temperature melting experiments have demonstrated that their hybrid stability with mRNA sequences is comparable to that observed for the 5S:18S and 5.8S:28S hybrids. The functional significance of 5 and 5.8S rRNA base-pairing with mRNAs and larger rRNAs is unknown, but these interactions could play important coordinating roles in ribosome structure, subunit interaction, and mRNA binding during translation.  相似文献   

3.
K D Sarge  E S Maxwell 《FEBS letters》1991,294(3):234-238
We have previously shown that a 5'-terminal region of mouse 5 S rRNA can base-pair in vitro with two distinct regions of 18 S rRNA. Further analysis reveals that these 5 S rRNA-complementary sequences in 18 S rRNA also exhibit complementarity to the Kozak consensus sequence surrounding the mRNA translational start site. To test the possibility that these 2 regions in 18 S rRNA may be involved in mRNA binding and translational initiation, we have tested, using an in vitro translation system, the effects of DNA oligonucleotides complementary to these 18 S rRNA sequences on protein synthesis. Results show that an oligonucleotide complementary to one 18 S rRNA region does inhibit translation at the step of initiation. We propose a Competitive-Displacement Model for the initiation of translation involving the intermolecular base-pairing of 5 S rRNA, 18 S rRNA and mRNA.  相似文献   

4.
Protein synthesis initiation on prokaryotic mRNAs involves base-pairing of a site preceding the initiation codon with the 3' terminal sequence of 16 S rRNA. It has been suggested that a similar situation may prevail in eukaryotic mRNAs. This suggestion is not based on experiments, but on observation of complementarities between mRNA 5' noncoding sequences and a conserved sequence near the 18 S rRNA 3' terminus. The hypothesis can be evaluated by comparing the number of potential binding sites found in the 5' noncoding sequences with the number of such sites expected to occur by chance. A method for computing this number is presented. The 5' noncoding sequences contain more binding sites than expected for a random RNA chain, but the same is true for 3' noncoding sequences. The effect can be traced to a clustering of purines and pyrimidines, common to noncoding sequences. In conclusion, a close inspection of the available mRNA sequences does not reveal any indication of a specific base-pairing ability between their 5' noncoding segments and the 18 S rRNA 3' terminus.  相似文献   

5.
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.  相似文献   

6.
7.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

8.
Saito R  Tomita M 《Gene》1999,238(1):79-83
The translation initiation mechanism of archaebacteria is still not clearly understood. Our previous work showed that ATG triplets before start codons have been strongly depleted in eukaryotic genomes, presumably because ribosome of eukaryotes scans mRNA from the 5' to 3' direction to find proper start codons. Extra ATG triplets before start codons would confuse the process and thus they have been negatively selected in eukaryotic genomes. In eubacterial genomes, on the other hand, ribosome binds to the Shine-Dalgarno (SD) sequence at once without mRNA scanning, and the characteristic patterns of ATG triplet depletion were not observed (Saito, R., Tomita, M., 1999. On negative selection against ATG triplets near start codons in eukaryotic and procaryotic genomes. J. Mol. Evol. 48, 213-217). The ATG triplet analysis on archaebacterial genomes revealed that Methanococcus jannaschii and Pyrococcus horikoshii show patterns similar to eukaryotes, implying that these species employ scanning of mRNA from the 5' to 3' direction in the process of translation initiation. On the other hand, our earlier study found that these archaea have SD-like sequences, which are complementary to the 3' end sequence of 16S rRNA, as in eubacterial translation initiation (Osada, Y., Saito, R., Tomita, M. Analysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various procaryotes. Bioinformatics, in press). These two results combined lead us to conclude that these archaea probably use a hybrid mechanism; their ribosome scans mRNAs from the 5' to 3' direction and then 16S rRNA binds to the SD-like sequence of the 5' UTR.  相似文献   

9.
A possibility of involvement of 3'-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3-terminal segment (nucleotides 1777-1811) of 18S rRNA including the last hairpin 45 is accessible for complementary interactions in 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA when added to wheat germ cell-free protein synthesizing system were found to specifically inhibit translation of uncapped reporter mRNA coding for beta-glucuronidase, which bears in the 5'-untranslated region (UTR) a leader sequence of potato virus Y (PVY) genomic RNA possessing fragments complementary to the region 1777-1811. It was shown that a sequence corresponding to nucleotides 291-316 of PVY, which is complementary to a major portion of the 3-terminal 18S rRNA segment 1777-1808, when placed into 5'-UTR, is able to enhance translational efficiency of the reporter mRNAs. The results obtained suggest that complementary interactions between mRNA 5'-UTR and 18S rRNA 3'-terminal segment can take place in the course of cap-independent translation initiation.  相似文献   

10.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

11.
The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors.  相似文献   

12.
Termination-dependent reinitiation is used to co-ordinately regulate expression of the M1 and BM2 open-reading frames (ORFs) of the dicistronic influenza B segment 7 RNA. The start codon of the BM2 ORF overlaps the stop codon of the M1 ORF in the pentanucleotide UAAUG and ~10% of ribosomes terminating at the M1 stop codon reinitiate translation at the overlapping AUG. BM2 synthesis requires the presence of, and translation through, 45 nt of RNA immediately upstream of the UAAUG, known as the 'termination upstream ribosome binding site' (TURBS). This region may tether ribosomal 40S subunits to the mRNA following termination and a short region of the TURBS, motif 1, with complementarity to helix 26 of 18S rRNA has been implicated in this process. Here, we provide further evidence for a direct interaction between mRNA and rRNA using antisense oligonucleotide targeting and functional analysis in yeast cells. The TURBS also binds initiation factor eIF3 and we show here that this protein stimulates reinitiation from both wild-type and defective TURBS when added exogenously, perhaps by stabilising ribosome-mRNA interactions. Further, we show that the position of the TURBS with respect to the UAAUG overlap is crucial, and that termination too far downstream of the 18S complementary sequence inhibits the process, probably due to reduced 40S tethering. However, in reporter mRNAs where the restart codon alone is moved downstream, termination-reinitiation is inhibited but not abolished, thus the site of reinitiation is somewhat flexible. Reinitiation on distant AUGs is not inhibited in eIF4G-depleted RRL, suggesting that the tethered 40S subunit can move some distance without a requirement for linear scanning.  相似文献   

13.
Subgenomic (sg) mRNAs are synthesized by (+)-strand RNA viruses to allow for efficient translation of products encoded 3' in their genomes. This strategy also provides a means for regulating the expression of such products via modulation of sg mRNA accumulation. We have studied the mechanism by which sg mRNAs levels are controlled in tomato bushy stunt virus, a small (+)-strand RNA virus which synthesizes two sg mRNAs during infections. Neither the viral capsid nor movement proteins were found to play any significant role in modulating the accumulation levels of either sg mRNA. Deletion analysis did, however, identify a 12-nt-long RNA sequence located approximately 1,000 nt upstream from the site of initiation of sg mRNA2 synthesis that was required specifically for accumulation of sg mRNA2. Further analysis revealed a potential base-pairing interaction between this sequence and a sequence located just 5' to the site of initiation for sg mRNA2 synthesis. Mutant genomes in which this interaction was either disrupted or maintained were analyzed and the results indicated a positive correlation between the predicted stability of the base-pairing interaction and the efficiency of sg mRNA2 accumulation. The functional significance of the long-distance interaction was further supported by phylogenetic sequence analysis which revealed conservation of base-pairing interactions of similar stability and relative position in the genomes of different tombusviruses. It is proposed that the upstream sequence represents a cis-acting RNA element which facilitates sg mRNA accumulation by promoting efficient synthesis of sg mRNA2 via a long-distance RNA-RNA interaction.  相似文献   

14.
The translation initiation of Escherichia coli mRNAs is known to be facilitated by a cis element upstream of the initiation codon, called the Shine-Dalgarno (SD) sequence. This sequence complementary to the 3' end of 16 S rRNA enhances the formation of the translation initiation complex of the 30 S ribosomal subunit with mRNAs. It has been debated that a cis element called the downstream box downstream of the initiation codon, in addition to the SD sequence, facilitates formation of the translation initiation complex; however, conclusive evidence remains elusive. Here, we show evidence that the downstream box plays a major role in the enhancement of translation initiation in concert with SD.  相似文献   

15.
In contrast to canonical mRNAs, translation of leaderless mRNA has been previously reported to continue in the presence of the antibiotic kasugamycin. Here, we have studied the effect of the antibiotic on determinants known to affect translation of leadered and leaderless mRNAs. Kasugamycin did not affect the Shine-Dalgarno (SD)-anti-SD (aSD) interaction or the function of translation initiation factor 3 (IF3). Thus, the preferential translation of leaderless mRNA in the presence of kasugamycin can neither be attributed to an expanding pool of 30S subunits with a "blocked" aSD nor to a lack of action of IF3, which has been shown to discriminate against translation initiation at 5'-terminal start codons. Using toeprinting, we observed that on leaderless mRNA 70S in contrast to 30S translation initiation complexes are comparatively resistant to the antibiotic. These results taken together with the known preference of 70S ribosomes for 5'-terminal AUGs lend support to the hypothesis that translation of leaderless mRNAs may as well proceed via an alternative initiation pathway accomplished by intact 70S ribosomes.  相似文献   

16.
Coupled expression of the M1 and BM2 open-reading frames (ORFs) of influenza B from the dicistronic segment 7 mRNA occurs by a process of termination-dependent reinitiation. The AUG start codon of the BM2 ORF overlaps the stop codon of the upstream M1 ORF in the pentanucleotide UAAUG, and BM2 synthesis is dependent upon translation of the M1 ORF and termination at the stop codon. Here, we have investigated the mRNA sequence requirements for BM2 expression. Termination-reinitiation is dependent upon 45 nucleotide (nt) of RNA immediately upstream of the UAAUG pentanucleotide, which includes an essential stretch complementary to 18S rRNA helix 26. Thus, similar to the caliciviruses, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the M1 stop codon. Consistent with this, repositioning of the M1 stop codon more than 24 nt downstream from the BM2 start codon inhibited BM2 expression. RNA structure probing revealed that the RNA upstream of the UAAUG overlap is not highly structured, but upon encountering the M1 stop codon by the ribosome, a stem-loop may form immediately 5' of the ribosome, with the 18S rRNA complementary region in the apical loop and in close proximity to helix 26. Mutational analysis reveals that the normal requirements for start site selection in BM2 expression are suspended, with little effect of initiation codon context and efficient use of noncanonical initiation codons. This suggests that the full complement of initiation factors is not required for the reinitiation process.  相似文献   

17.
It is reported that the AUG-upstream region on mRNAs of highly expressed genes from S. cerevisiae invariably possesses a translation-initiation promoting site, that can base pair with a well-conserved site on 18S rRNA during the formation of 40S initiation complex. Weak hairpin stem in the mRNA region between such a site and the initiation codon brings the site nearer to the initiation codon and also extends the length of base pairing. Such a base pairing can lead to a comparatively more stable 40S initiation complex, resulting in a higher rate of formation of the 80S initiation complex and consequently in an enhancement of the rate of initiation of translation. The site on 18S rRNA can interchange its base pairing between the site on mRNA and a well-conserved site on 25S rRNA in the formation of the 80S initiation complex.  相似文献   

18.
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.  相似文献   

19.
Iron regulatory protein 1 (IRP-1) binding to an iron-responsive element (IRE) located close to the cap structure of mRNAs represses translation by precluding the recruitment of the small ribosomal subunit to these mRNAs. This mechanism is position dependent; reporter mRNAs bearing IREs located further downstream exhibit diminished translational control in transfected mammalian cells. To investigate the underlying mechanism, we have recapitulated this position effect in a rabbit reticulocyte cell-free translation system. We show that the recruitment of the 43S preinitiation complex to the mRNA is unaffected when IRP-1 is bound to a cap-distal IRE. Following 43S complex recruitment, the translation initiation apparatus appears to stall, before linearly progressing to the initiation codon. The slow passive dissociation rate of IRP-1 from the cap-distal IRE suggests that the mammalian translation apparatus plays an active role in overcoming the cap-distal IRE–IRP-1 complex. In contrast, cap-distal IRE–IRP-1 complexes efficiently repress translation in wheat germ and yeast translation extracts. Since inhibition occurs subsequent to 43S complex recruitment, an efficient arrest of productive scanning may represent a second mechanism by which RNA-protein interactions within the 5′ untranslated region of an mRNA can regulate translation. In contrast to initiating ribosomes, elongating ribosomes from mammal, plant, and yeast cells are unaffected by IRE–IRP-1 complexes positioned within the open reading frame. These data shed light on a characteristic aspect of the IRE-IRP regulatory system and uncover properties of the initiation and elongation translation apparatus of eukaryotic cells.  相似文献   

20.
《The Journal of cell biology》1994,127(6):1537-1545
Translational regulation is a key modulator of gene expression in chloroplasts of higher plants and algae. Genetic analysis has shown that translation of chloroplast mRNAs requires nuclear-encoded factors that interact with chloroplastic mRNAs in a message-specific manner. Using site-specific mutations of the chloroplastic psbA mRNA, we show that RNA elements contained within the 5' untranslated region of the mRNA are required for translation. One of these elements is a Shine- Dalgarno consensus sequence, which is necessary for ribosome association and psbA translation. A second element required for high levels of psbA translation is located adjacent to and upstream of the Shine-Dalgarno sequence, and maps to the location on the RNA previously identified as the site of message-specific protein binding. This second element appears to act as a translational attenuator that must be overcome to activate translation. Mutations that affect the secondary structure of these RNA elements greatly reduce the level of psbA translation, suggesting that secondary structure of these RNA elements plays a role in psbA translation. These data suggest a mechanism for translational activation of the chloroplast psbA mRNA in which an RNA element containing the ribosome-binding site is bound by message- specific RNA binding proteins allowing for increased ribosome association and translation initiation. These elements may be involved in the light-regulated translation of the psbA mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号