首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanobacterium Mastigocladus laminosus produces motile hormogonia which move by gliding motility. These hormogonia were characterized in terms of their morphology, state of differentiation of the cells, optimal temperature for production and motility, minimal nutritional requirements to sustain motility, liberation of the hormogonium from its parental trichome, average surface velocity, and maximal concentration of agar through which the hormogonium may move. We found that an average hormogonium consisted of 13.6 cells of only the narrow-cell-type morphology. Gliding motility and the production of hormogonia were maximal at 45 degrees C. Agarose plus 0.20 mM Ca2+ was sufficient to sustain gliding motility. Hormogonia were liberated from the parental trichome by formation and lysis of a necridium. The average surface velocity of a hormogonium was 1.7 micron/s with a maximal velocity of 3 micron/s. Hormogonia were motile through 7% agar. Motile hormogonia leave a record of their passage in the form of easily visible tracks on the surface of solid media. Three types of tracks were observed: straight, sinusoidal, and circular. Normal, forward-directed motion involves screwlike rotation that describes a right-handed helix. However, observations are presented which suggest that rotational motion is not a prerequisite for gliding motility in this cyanobacterium.  相似文献   

2.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:1,自引:0,他引:1  
钟泽璞  施定基 《植物学报》2000,17(3):204-210
本文介绍了丝状体蓝藻(亦称蓝细菌) 的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞形状、细胞内存有气囊和可移动的短而直的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行了讨论;还介绍了念珠藻(Nostoc) ,单歧藻(Tolypothrix) 和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的补偿性色适应。这三种细胞类型的适应形成取决于两种不同的光受体系统。藻殖段和异形胞两者的分化可能取决于光合电子传递链;而营养细胞的补偿性色适应则受光敏色素的调节。此外,谷酰胺合成酶合成和活性调节的PII蛋白,在协同藻殖段分化、异形胞分化及营养细胞的补偿色适应中起重要作用。由于蓝藻藻殖段分化及其调节机制是一个新的研究领域,关于它的知识尚不完整,亟待人们加强研究。  相似文献   

3.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:4,自引:0,他引:4  
本文介绍了丝状体蓝藻(亦称蓝细菌)的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞开状、细胞内存有气囊和可移动的短而真的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行一讨论;还介绍了含球藻(Nostoc),单歧藻(Tolypothrix)和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的被偿性色适应。这  相似文献   

4.
5.
A poorly understood feature of nostocacean growth and development is the formation of ordered macroscopic structures from microscopic cells, trichomes, and filaments. Using macro-photography, time-lapse micro-cinematography, light and electron microscopy of Nostoc species in pure culture, it has been possible to demonstrate how motility, adhesion and aggregation of photo-induced hormogonia result in macro-morphogenesis of dendroid forms. Red-light induced hormogonia from synchronized cultures aggregate rapidly on agar as tight flowing streams, in patterns responsive to the direction and quality of incident light. Unlike the even textured cell surfaces of heterocystous filaments, the cell walls of swarming hormogonia are covered with a striate mucoid layer containing pili attached to cells of adjacent hormogonia. During differentiation to an aseriate phase, cell wall fusions occur and a gelatinous matrix forms around the enlarging sub-globose cells. Liquid suspensions of hormogonia aggregate in a solid mass following the net centripetal movement of interlaced loops of curved hormogonia attached by adhesive pili. In darkness or dim white light, compressed hormogonial aggregates form erect tree-like (dendroid) macro-structures by photo-tactic reversal of streaming motility. Hormogonia within the aggregates re-organize into streams that push upward into the light, forming structured, positively phototropic protuberances, several millimeters in length. Under weak illumination, the structures become branched with crowns of waving hormogonia. The dendroid morphology is stabilized by deposit of gelatinous material derived from successive cycles of cell-filament development, liberation of heterocysts and formation of dormant cells and trichomes.  相似文献   

6.
7.
发状念珠藻藻殖段的分化及其光合特性的研究   总被引:1,自引:0,他引:1  
Hormogonia of Nostoc flagelliforme is one of the developmental stages in the life cycle of cyanobacterium. High yields of pure hormogonia were obtained by weak light (the filaments were covered by sterilized sand for blocking light), red light, white light plus DCMU (3, 4-dichlorophenyl-1, 1-dimethylurea) in the culture. These pure fractions of hormogonia allowed the study of physiological measurements in comparison to vegetative filaments. The photosynthesis in the hormogonia and the vegetative filaments was characterized by fluorescence emission spectra at 77 K, absorption spectrum and oxygen evolution. Absorption spectrum of the hormogoia and vegetative filaments did not reveal difference. The data indicated the similarity of pigment contents between hormogonia and vegetative filaments. Some differences were observed in oxygen evolution of vegetative filaments and hormogonia in the temperature range of 15 ℃ to 45 ℃ and light intensity around 110 μmol·m-2·s-1 to 1200 μmol·m-2·s-1. The fluorescence emission spectra showed that energy distribution between the two photosystems in mature colonies was more balance than in hormogonia. The absorption of light energy in phycobilisomes and the transfer to the two photosystems in the hormogonia were more effective than in the mature colonies. It may be concluded that the formation of hormogonia affected on the structure and function of phytosynthesis.  相似文献   

8.
Cyanobacteria-bryophyte symbioses   总被引:1,自引:0,他引:1  
Cyanobacteria are a large group of photosynthetic prokaryotesof enormous environmental importance, being responsible fora large proportion of global CO2 and N2 fixation. They formsymbiotic associations with a wide range of eukaryotic hostsincluding plants, fungi, sponges, and protists. The cyanobacterialsymbionts are often filamentous and fix N2 in specialized cellsknown as heterocysts, enabling them to provide the host withfixed nitrogen and, in the case of non-photosynthetic hosts,with fixed carbon. The best studied cyanobacterial symbiosesare those with plants, in which the cyanobacteria can infectthe roots, stems, leaves, and, in the case of the liverwortsand hornworts, the subject of this review, the thallus. Thesymbionts are usually Nostoc spp. that gain entry to the hostby means of specialized motile filaments known as hormogonia.The host plant releases chemical signals that stimulate hormogoniaformation and, by chemoattraction, guide the hormogonia to thepoint of entry into the plant tissue. Inside the symbiotic cavity,host signals inhibit further hormogonia formation and stimulateheterocyst development and dinitrogen fixation. The cyanobiontsundergo morphological and physiological changes, including reducedgrowth rate and CO2 fixation, and enhanced N2 fixation, andrelease to the plant much of the dinitrogen fixed. This shortreview summarizes knowledge of the cyanobacterial symbioseswith liverworts and hornworts, with particular emphasis on theimportance of pili and gliding motility for the symbiotic competenceof hormogonia. Key words: Bryophyte, cyanobacteria, gliding motility, pili, symbiosis Received 1 August 2007; Revised 23 December 2007 Accepted 7 January 2008  相似文献   

9.
A poorly understood feature of nostocacean growth and development is the formation of ordered macroscopic structures from microscopic cells, trichomes, and filaments. Using macro‐photography, time‐lapse micro‐cinematography, light and electron microscopy of Nostoc species in pure culture, it has been possible to demonstrate how motility, adhesion and aggregation of photo‐induced hormogonia result in macro‐morphogenesis of dendroid forms. Red‐light induced hormogonia from synchronized cultures aggregate rapidly on agar as tight flowing streams, in patterns responsive to the direction and quality of incident light. Unlike the even textured cell surfaces of heterocystous filaments, the cell walls of swarming hormogonia are covered with a striate mucoid layer containing pili attached to cells of adjacent hormogonia. During differentiation to an aseriate phase, cell wall fusions occur and a gelatinous matrix forms around the enlarging sub‐globose cells. Liquid suspensions of hormogonia aggregate in a solid mass following the net centripetal movement of interlaced loops of curved hormogonia attached by adhesive pili. In darkness or dim white light, compressed hormogonial aggregates form erect tree‐like (dendroid) macro‐structures by photo‐tactic reversal of streaming motility. Hormogonia within the aggregates re‐organize into streams that push upward into the light, forming structured, positively phototropic protuberances, several millimeters in length. Under weak illumination, the structures become branched with crowns of waving hormogonia. The dendroid morphology is stabilized by deposit of gelatinous material derived from successive cycles of cell‐filament development, liberation of heterocysts and formation of dormant cells and trichomes.  相似文献   

10.
In response to environmental change, the cyanobacterium Nostoc punctiforme ATCC 29133 produces highly adapted filaments known as hormogonia that have gliding motility and serve as the agents of infection in symbioses with plants. Hormogonia sense and respond to unidentified plant-derived chemical signals that attract and guide them towards the symbiotic tissues of the host. There is increasing evidence to suggest that their interaction with host plants is regulated by chemotaxis-related signal transduction systems. The genome of N. punctiforme contains multiple sets of chemotaxis (che)-like genes. In this study we characterize the large che5 locus of N. punctiforme. Disruption of NpR0248, which encodes a putative CheR methyltransferase, results in loss of motility and significantly impairs symbiotic competency with the liverwort Blasia pusilla when compared with the parent strain. Our results suggest that chemotaxis-like elements regulate hormogonia function and hence symbiotic competency in this system.  相似文献   

11.
Abstract: Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the differentiation of Nostoc sphaeroides Kützing to the hormogonia stage. Results showed that differentiation of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration. Following the testing of different sugars, the effects of different lights were examined. It was found that 5–10 umol‐nT2‐s‐1 photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80% differentiation) and red light (0–10% differentiation). Although they showed different efficiencies in inducing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process. (Managing editor: Ping HE)  相似文献   

12.
Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration.Following the testing of different sugars, the effects of different lights were examined. It was found that 5-10 μmol.m-2.s-1 photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80%differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in induc ing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.  相似文献   

13.
14.
Many bacteria are capable of movement over surfaces without flagella or pili; they glide. Nostoc punctiforme is a cyanobacterium that differentiates specialized gliding filaments called hormogonia, but the mechanism underlying their movement is currently unknown. Risser et al. characterize the h ormogonia m otility and p olysaccharide (hmp) locus that encodes proteins homologous to well‐studied chemotaxis systems. All but one of the genes in the locus were required for gliding motility and each protein localized as a ring near the cell junction. One protein, the CheA homologue HmpE, was capable of autophosphorylation and phosphotransfer to the CheY homologue HmpB. This study reveals the hmp locus as an important regulator of gliding and highlights N. punctiforme as a model for understanding gliding motility in a complex multicellular bacterium.  相似文献   

15.
In the donkey species, the application of cooled semen artificial insemination could aid the survival of endangered breeds. Fifteen ejaculates collected from three Amiata donkeys were used to evaluate the effect of three extenders on spermatozoal motility characteristics after cooling and preservation for up to 72 h. Semen was diluted at a 1:4 semen:extender ratio in INRA96, INRA82 and INRA82 added of 2% centrifuged egg yolk (INRA82-Y) and motility was evaluated by the computerized analyzer CEROS 12.1 at hours 0, 24, 48 and 72. Total motility, and rapid spermatozoa after 24, 48 and 72 h of preservation were higher in INRA82-Y than in INRA96 or INRA82, as was progressive motility after 72 h. INRA82-Y was thus used in a second study, where the effects of centrifugation and of removal of seminal plasma on cooled donkey semen were evaluated on 12 ejaculates from four males. Rapid spermatozoa after 24 and 72 h, and total motility after 72 h were better preserved in the non-centrifuged samples than when seminal plasma was removed, the contrary was true for the proportion of spermatozoa keeping their progressive motility at hour 48. In conclusion, INRA82-Y kept sperm motility characteristics during cooled storage better than INRA82 or INRA96, and removal of seminal plasma during in vitro preservation did not seemed advantageous. Further studies are needed to better understand the changes in motility patterns of donkey spermatozoa caused by seminal plasma and semen extenders, and their relation to fertility.  相似文献   

16.
17.
Standard semen parameters are limited in their capacity to distinguish subfertile boars and to assess storage influences on liquid preserved boar semen. The evaluation of sperm chromatin structural integrity could have potential as a diagnostic tool in AI practice. This study assessed whether the determination of sperm DNA integrity adds a useful diagnostic tool for selection of boar ejaculates in routine AI procedure and assessment of storage effects in diluted semen. Special emphasis was laid on the standard spermatological characterization of semen samples in parallel with the determination of the DNA fragmentation index (DFI) through the sperm chromatin structure assay (SCSA). Six hundred ninety two (692) ejaculates from 79 Piétrain boars in an AI center were analyzed for motility, morphology and DFI over a period of 24 weeks. 95.5% of the semen samples had a DFI < 5% with low distribution of variation for DFI due to boar and ejaculate (< 5%). 61.3% of ejaculates with DFI > 5% showed values below thresholds for sperm motility or morphology. Based on field data from 13,239 inseminations, fertility of boars with temporarily elevated DFI was not impaired (P > 0.05). 24 randomly selected diluted semen samples did not show a significant increase of DFI during 168 h storage (P > 0.05). In a further experiment, 42 diluted semen samples from 14 normospermic boars were assessed for motility, membrane integrity (PI, FITC-PNA) and SCSA parameters. Three single ejaculates showed an increase of DFI at 120 and 168 h storage time. This was accompanied by a pronounced loss of both motility and membrane integrity. In conclusion, the evaluation of sperm chromatin structural integrity by the SCSA has only limited value for identifying sperm deficiencies in normospermic fresh or stored boar semen. Temporarily elevated DFIs seem not to be indicative of subfertility in normospermic boars.  相似文献   

18.
Nostocacean cyanobacteria typically produce gliding filaments termed hormogonia at a low frequency as part of their life cycle. We report here that all Nostoc spp. competent in establishing a symbiotic association with the hornwort Anthoceros punctatus formed hormogonial filaments at a high frequency in the presence of A. punctatus. The hormogonia-inducing activity was produced by A. punctatus under nitrogen-limited culture conditions. The hormogonia of the symbiotically competent Nostoc spp. were characterized as motile (gliding) filaments lacking heterocysts and with distinctly smaller cells than those of vegetative filaments; the small cells resulted from a continuation of cell division uncoupled from biomass increase. An essentially complete conversion of vegetative filaments to hormogonia occurred within 12 h of exposure of Nostoc sp. strain 7801 to A. punctatus growth-conditioned medium. Hormogonia formation was accompanied by loss of nitrogen fixation (acetylene reduction) and by decreases in photosynthetic CO2 fixation and in vivo NH4+ assimilation of 30% and approximately 40%, respectively. The rates of acetylene reduction and CO2 fixation returned to approximately the control rates within 72 to 96 h after hormogonia induction, as the cultures of Nostoc sp. strain 7801 differentiated heterocysts and reverted to the vegetative growth state. The relationship between hormogonia formation and symbiotic competence is discussed.  相似文献   

19.
To establish a sensitive bioassay for Nostocean hormogonium induction, we compared the effectiveness of the morpho-differentiation induction on two gelled plates, agar and gellan gum, for anacardic acid C15:1-Δ8 decyl ester (1) (100 nmol/disc). On BG-110 (nitrogen-free) medium-based 0.6 and 0.8% agar plates, Nostoc sp. strain Yaku-1 isolated from a coralloid root of Cycas revoluta in Yakushima Island showed clear morpho-differentiation from filamentous aggregates into hormogonia, and the induced hormogonia dispersed within 24 h; however, similar hormogonium formation was not observed at agar concentrations of 1.0% or higher. Conversely, hormogonium induction was considerably more pronounced on gellan gum plates than those on agar plates through concentrations ranging from 0.6 to 1.6% even after 12 h of incubation, particularly active on the 0.8–1.0% gellan gum plates. Thus, gellan gum plates can achieve clear results within 12 h and are thus highly useful for primary screening for hormogonium-inducing factors (HIFs).  相似文献   

20.
Experiments were carried out to investigate if the stage of life cycle of Nostoc muscorum Agardh alters vulnerability to grazing by Pseudomicrothorax dubius Maupas. When the percentage of motile hormogonia of all counted trichomes exceeded 10%, most of the grazers (80%–100%) became satiated within 2 h. In most cases (90%) grazers successfully attacked motile hormogonia. Attacks on nonmotile trichomes were much rarer (8%) and mainly unsuccessful. Direct observations revealed that hormogonia could be ingested by the ciliates as long as they remained motile. Hormogonia already adhered to the bottom were still recognized by ciliates as potential food but were not ingested. We did not observe attacks on old vegetative colonies. This is apparently the first report on the motile stage of Nostoc being susceptible to ciliate grazing. Experiments with other grazers, Nassula tumida Maskell and two different clones of Furgassonia blochmanni Faure‐Fremiet, showed that only one clone of F. blochmanni was able to feed on motile hormogonia, whereas the second clone and N. tumida showed no interest in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号