首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Fukuda  Y Hamasaki  H H Tai 《Life sciences》1985,37(13):1249-1255
Acute ureteral obstruction increased cyclooxygenase, thromboxane and prostacyclin synthases and NAD+-linked 15-hydroxyprostaglandin dehydrogenase activities in rat kidney. Significant increase in prostaglandin biosynthetic and catabolic activities may mediate some pathological consequences found in obstructive nephropathy.  相似文献   

2.
Piroxicam is a potent inhibitor of prostaglandin biosynthesis. Experiments utilizing cell culture and microsomes derived from various sources have demonstrated that piroxicam is a selective inhibitor of the cyclooxygenase step of arachidonic acid metabolism. Little blocking activity is observed at the phospholipase, thromboxane or prostacyclin synthetase, and arachidonic acid lipoxygenase steps.  相似文献   

3.
Piroxicam is a potent inhibitor of prostaglandin biosynthesis. Experiments utilizing cell culture and microsomes derived from various sources have demonstrated that piroxicam is a selective inhibitor of the cyclooxygenase step of arachidonic acid metabolism. Little blocking activity is observed at the phospholipase, thromboxane or prostacyclin synthetase, and arachidonic acid lipoxygenase steps.  相似文献   

4.
Arachidonic acid is metabolized via the cyclooxygenase pathway to several potent compounds that regulate important physiological functions in the cardiovascular system. The proaggregatory and vasoconstrictive thromboxane A2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of prostacyclin (prostaglandin I2) synthesized by blood vessels. Furthermore, arachidonic acid is metabolized by lipoxygenase enzymes to different isomeric hydroxyeicosatetraenoic acids (HETE's). This metabolic pathway of arachidonic acid was studied in detail in endothelial cells obtained from bovine aortae. It was found that this tissue produced 6-ketoprostaglandin F1 alpha as a major cyclooxygenase metabolite of arachidonic acid, whereas prostaglandins F2 alpha and E2 were synthesized only in small amounts. The monohydroxy fatty acids formed were identified as 15-HETE, 5-HETE, 11-HETE and 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT). The latter two compounds were produced by cyclooxygenase activity. Nordihydroguaiaretic acid (NDGA), a rather selective lipoxygenase inhibitor and antioxidant blocked the synthesis of 15- and 5-HETE. It also strongly stimulated the cyclooxygenase pathway, and particularly the formation of prostacyclin. This could indicate that NDGA might exert its effect on prostacyclin levels by preventing the synthesis of 15-hydroperoxyeicosatetraenoic acid (15-HPETE), a potent inhibitor of prostacyclin synthetase. 15-HPETE could therefore act as an endogenous inhibitor of prostacyclin production in the vessel wall.  相似文献   

5.
A kinetic scheme of the prostacyclin-thromboxane system has been evolved on the basis of our own experimental material and the results described elsewhere. The kinetic behavior of the model has been analysed with the aid of computer technology by varying the following parameters: phospholipase activities, free arachidonic acid exchange rates between platelets and endothelium, prostaglandin H (PGH) synthetase biosynthesis rates, velocities of arachidonic acid pathways other than cyclooxygenase ones. It has been demonstrated that the biological system is capable of sustaining prostacyclin and thromboxane concentrations at steady fixed levels within a wide range of kinetic parameters.  相似文献   

6.
The two cyclooxygenase isoforms, cyclooxygenase-1 and cyclooxygenase-2, both metabolize arachidonic acid to prostaglandin H2, which is subsequently processed by downstream enzymes to the various prostanoids. In the present study, we asked if the two isoforms differ in the profile of prostanoids that ultimately arise from their action on arachidonic acid. Resident peritoneal macrophages contained only cyclooxygenase-1 and synthesized (from either endogenous or exogenous arachidonic acid) a balance of four major prostanoids: prostacyclin, thromboxane A2, prostaglandin D2, and 12-hydroxyheptadecatrienoic acid. Prostaglandin E2 was a minor fifth product, although these cells efficiently converted exogenous prostaglandin H2 to prostaglandin E2. By contrast, induction of cyclooxygenase-2 with lipopol- ysaccharide resulted in the preferential production of prostacyclin and prostaglandin E2. This shift in product profile was accentuated if cyclooxygenase-1 was permanently inactivated with aspirin before cyclooxygenase-2 induction. The conversion of exogenous prostaglandin H2 to prostaglandin E2 was only modestly increased by lipopolysaccharide treatment. Thus, cyclooxygenase-2 induction leads to a shift in arachidonic acid metabolism from the production of several prostanoids with diverse effects as mediated by cyclooxygenase-1 to the preferential synthesis of two prostanoids, prostacyclin and prostaglandin E2, which evoke common effects at the cellular level.  相似文献   

7.
We have previously reported that estradiol treatment stimulates prostacyclin production by cultured rat aortic smooth muscle cells, through the stimulation of fatty acid cyclooxygenase and prostacyclin synthetase activities. In order to see whether estradiol stimulates the fatty acid cyclooxygenase activity in platelets, intact rats were treated with estradiol, and thromboxane biosynthesis in platelets and prostacyclin production by aortas were investigated. Estradiol significantly stimulates prostacyclin production by aortas. However, no significant effect on thromboxane biosynthesis in platelets is observed. Our present results support the idea that estradiol would be a protective hormone in atherosclerotic heart disease.  相似文献   

8.
The present studies were designed (1) to examine the pattern of changes in eicosanoid biosynthesis in isolated rat glomeruli, and (2) to correlate these changes with the previously observed alterations in renal perfusion and glomerular filtration rate which occur after uranyl nitrate administration, a model of toxin-induced acute renal failure. In the first part of this study, the in vitro and the in vivo effects of two cyclooxygenase inhibitors were examined for their ability to inhibit rat glomerular eicosanoid biosynthesis. Inhibition of prostaglandin E2 and prostaglandin F2 alpha generation by 1 mM aspirin in vitro was 76 and 82%, respectively. Similar inhibitions of 85 and 72% of biosynthesis of the above-mentioned lipids by 0.1 mM indomethacin were also noted. Intraperitoneal administration of aspirin (150 mg/kg) resulted in a significant inhibition of 88% or greater of prostaglandin E2, prostaglandin F2 alpha, 6-keto-prostaglandin F2 alpha, and thromboxane B2 biosynthesis. These results indicated that the expected alterations produced under in vivo conditions were detectable by in vitro techniques used in this study. 24 h after the administration of uranyl nitrate (25 mg/kg), significant increases in the biosynthesis of prostaglandin E2 (124%) and prostaglandin F2 alpha (88%) were observed when compared to the control values. No significant changes in prostacyclin or thromboxane formation were noted at this time. A further increase in the biosynthesis of prostaglandin E2 (248%), prostaglandin F2 alpha (262%), and a significant increase in prostacyclin (120%), measured as 6-keto-prostaglandin F1 alpha, were noted at 48 h. No changes in thromboxane B2 biosynthesis were noted. It is concluded that these data are consistent with the hypothesis that the increased glomerular biosynthesis of vasodilator eicosanoids (i.e., prostaglandin E2 and prostacyclin) may play a significant role in the homeostatic regulation of renal perfusion and glomerular filtration after acute toxic injury to the kidney.  相似文献   

9.
Prostaglandins are part of the family of oxygenated metabolites of arachidonic acid known collectively as eicosanoids. While they are formed, act, and are inactivated locally and rarely circulate in plasma, they can affect blood flow in some tissues and so might contribute to the control of peripheral vascular resistance. Few studies have shown any derangement of total body prostaglandin synthesis or metabolism in hypertension, but increased renal synthesis of one prostanoid, thromboxane A2, has been noted in spontaneously hypertensive rats and some hypertensive humans. This potent vasoconstrictor may account for the increased renal vascular resistance and suppressed plasma renin activity seen in many patients with hypertension. Increased renal vascular resistance could increase the blood pressure directly as a component of total peripheral resistance or indirectly by increasing glomerular filtration fraction and tubular sodium reabsorption. Specific thromboxane synthesis inhibitors not only decrease renal thromboxane production but also increase renal vasodilator prostaglandin synthesis when prostaglandin synthesis is stimulated. This redirection of renal prostaglandin synthesis toward prostacyclin might be of benefit in correcting a fundamental renal defect in patients with hypertension.  相似文献   

10.
A renal medulla 100,000g pellet metabolized arachidonic acid, C20:4, to the previously described prostaglandins prostaglandin E2, 6-ketoprostaglandin F, thromboxane B2, 12-hydroxyheptadecatrienoic acid, and 11-hydroxyeicosatetraenoic acid. In addition, under conditions of low enzyme to substrate ratios, the renal medulla also produced an unusual metabolite from arachidonic acid. This metabolite was inhibited by indomethacin, and thus suggested that it was a product of the cyclooxygenase. Addition of GSH to the incubation inhibited its formation, while p-hydroxymercuri-benzoate enhanced its formation. This compound was identified by HPLC purification, uv absorption, and gas chromatography-mass spectroscopy. The compound was 9,15 dioxo,11-hydroxyprosta-5,13-dienoic acid.  相似文献   

11.
Regional and species differences in prostaglandin synthesis from gastroduodenal mucosa were assessed radiometrically. In the presence of excess added arachidonic acid substrate, corporal mucosa generated more prostanoid product per DNA than did antral or duodenal mucosa whether the whole homogenate or the microsomal fraction was used as an enzyme source. This appeared to be secondary to variability in cyclooxygenase activity and could not be explained by regional differences in the activity of enzymes competing for arachidonic acid substrate, in free endogenous arachidonic acid levels, in prostaglandin catabolizing activity, or in homogenate inhibitors. The qualitative product profile differed between species but not between regions within a species.  相似文献   

12.
Cytochrome P-450 can metabolize arachidonic (5,8,11,14-eicosatetraenoic) acid to four epoxides. One of them, cis-5(6)oxido-8,11,14-eicosatrienoic acid, has been reported to possess biological activity. To ascertain whether this epoxide could be a substrate for the enzyme fatty acid cyclooxygenase, synthetic 3H-labeled cis-5(6)-oxido-8,11,14-eicosatrienoic acid was incubated with microsomes of ram seminal vesicles and incubated with microsomes of ram seminal vesicles and the products were separated by reversed phase high performance liquid chromatography. The substrate was enzymatically transformed into products, which were more polar than 5,6-dihydroxy-8,11,14-eicosatrienoic acid. The biosynthesis was strongly inhibited by indomethacin or diclofenac sodium, two inhibitors of fatty acid cyclooxygenase. Two of the major metabolites could be identified by capillary gas chromatography-mass spectrometry as two stereoisomers of 5-hydroxyprostaglandin I1, viz. (5R,6R)-5-hydroxyprostaglandin I1 and (5S,6S)-5-hydroxyprostaglandin I1. The structures were established by comparison with the mass spectra of authentic material and by the retention time on capillary gas chromatography using deuterated internal standards. The two stereoisomers were presumably formed nonenzymatically from the intermediate 5(6)oxidoprostaglandin endoperoxides or from 5(6)oxidoprostaglandin F1 alpha during the isolation procedure.  相似文献   

13.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

14.
It has been postulated that the ratio of prostacyclin/thromboxane A2 in the blood is an important marker for atherosclerosis. We studied the role of the Acetylated Low Density Lipoprotein (Acetyl-LDL) on the arachidonic acid metabolism in macrophages, the progenitor of the foam-cells in atheroma. When stimulated by Acetyl-LDL, macrophage released and metabolized arachidonic acid. This effect was time- and dose-dependent. Only 50% of the Acetyl-LDL-induced arachidonic acid released was metabolized while more than 90% of zymosan or A23187 induced arachidonic acid released was metabolized. Furthermore, when the macrophages were stimulated by Acetyl-LDL, a decrease of prostaglandin E2 and an increase of the levels of prostacyclin and thromboxane were noted. The implications of these observations in the pathogenesis of atherosclerosis are discussed.  相似文献   

15.
Eicosanoids are potent mediators of inflammation and are synthesized in increased quantity in active ulcerative colitis. To elucidate the role of prostaglandin E2, thromboxane A2, prostaglandin I2, and leukotriene B2 in acute chemical colitis induced by 4% acetic acid, we utilized an animal model which has a deficiency of arachidonic acid, the precursor of eicosanoids due to an essential fatty acid deficient diet. Forty-eight hours after colitis was induced, mucosal synthesis of the cyclooxygenase products, prostaglandin E2, thromboxane A2, and prostaglandin I2, was significantly decreased in essential fatty acid deficient rats compared to normal controls. However, the 5-lipoxygenase product, leukotriene B4, was not different between groups. The decrease in cyclooxygenase products did not correlate with any change in the severity of colonic inflammation as assessed by gross morphology, histology, or myleoperoxidase activity. Thus inhibition of formation of the cyclooxygenase products of arachidonate metabolism does not appear to improve the degree of inflammation under the experimental conditions employed in this study.  相似文献   

16.
The fatty acid cyclooxygenase (EC 1.14.99.1) that produces the prostaglandin, thromboxane, and prostacyclin precursor (PGH2), was solubilized from human platelet microsomes in 20 sucrose and 1.0% Triton X-100. The enzyme was purified 300-fold by electrofocusing, Sephadex G-200 gel filtration, and hydrophobic chromatography on ethyl agarose. The cyclooxygenase catalyzed the conversion of arachidonic acid to prostaglandin endoperioxide, PGH2, that was trapped at -25 degrees C and separated on TLC at -20 degrees C. PGH2 was hydrolyzed to HHT in acidic pH, or was chemically converted to PGE2 in slightly alkaline pH in the absence of cofactors. The enzyme showed a broad pH optimum in the range of 7-9. Hemin containing substances such as methemoglobin were absolutely required as cofactors, while tryptophan, epinephrine, phenol, and hydroquinone stimulated the PGH2 formation. Metal ions, such as ZN2+ and Cd2+ inhibited the enzyme reaction at 0.1 to 1 mM. The molecular weight of the purified enzyme was estimated at 79,432 by sodium dodecyl sulfate disc gel electrophoresis at pH 8.0. The properties of the human platelet enzyme was generally similar to the sheep vesicular enzyme in the method of solubilization, pH optimum, and molecular weight.  相似文献   

17.
We have previously shown that estrogen treatment increases cerebrovascular cyclooxygenase-1, prostacyclin synthase, and production of prostacyclin. Therefore, vascular tone and prostanoid production were measured to investigate functional consequences of estrogen exposure. Middle cerebral arteries were isolated from ovariectomized female Fischer-344 rats with or without chronic in vivo 17beta-estradiol treatment. In vivo 17beta-estradiol treatment increased cerebral artery diameter; functional endothelium was required for expression of these differences. The nonspecific cyclooxygenase inhibitor indomethacin constricted, whereas arachidonic acid dilated, cerebral arteries from estrogen-treated animals. Estrogen exposure increased production of prostacyclin by cerebral arteries. Conversely, in estrogen-deficient animals, indomethacin dilated and arachidonic acid constricted cerebral blood vessels. This correlated with vasorelaxation following inhibition of the thromboxane-endoperoxide receptor with SQ-29548 but not after selective blockade of thromboxane synthase with furegrelate, suggesting prostaglandin endoperoxide (i.e., PGH2) activity. Removal of the endothelium or selective blockade of cyclooxygenase-1 with SC-560 abolished estrogen-mediated differences in the effects of arachidonate on vessel diameter and on prostacyclin production by cerebral arteries. These data suggest 17beta-estradiol decreases cerebrovascular tone by shifting the primary end product of the endothelial cyclooxygenase-1 pathway from the constrictor prostaglandin PGH2 to the vasodilator prostacyclin. These effects of estrogen may contribute to the heightened thromboresistance and enhanced cerebral blood flow documented in pre-versus postmenopausal women.  相似文献   

18.
Preeclampsia is characterized by an imbalance between two cyclooxygenase metabolites of arachidonic acid, thromboxane and prostacyclin, that favors thromboxane. Because of the biologic actions of these two eicosanoids, this imbalance might explain major clinical symptoms of preeclampsia, such as hypertension, platelet aggregation and reduced uteroplacental blood flow. In the maternal circulation, this imbalance is primarily manifested by decreased production of prostacyclin by endothelial cells. Platelet thromboxane synthesis is only increased in severe preeclampsia. In the placenta and in leukocytes, the imbalance is exacerbated by increased production of thromboxane coupled with decreased production of prostacyclin in both mild and severe preeclampsia. Longitudinal measurements of urinary metabolites of thromboxane and prostacyclin reveal that the thromboxane/prostacyclin imbalance predates the onset of clinical symptoms of preeclampsia. The imbalance between thromboxane and prostacyclin is most likely caused by oxidative stress, which is manifest in preeclampsia by increased lipid peroxidation and decreased antioxidant protection. Oxidative stress may drive this imbalance because lipid peroxides activate the cyclooxygenase enzyme to increase thromboxane synthesis, but at the same time they inhibit prostacyclin synthase to decrease prostacyclin synthesis. Low-dose aspirin therapy (50-150 mg/day) has been considered for the prevention of preeclampsia because it selectively inhibits thromboxane synthesis. Several studies reported dramatic decreases in the incidence of preeclampsia with low-dose aspirin therapy. However, two large multicenter studies reported only modest decreases, which dampened enthusiasm. The two large studies were "intent to treat" studies which included patients who were noncompliant and who discontinued the use of aspirin. In one of the studies for which compliance statistics were available only 53% of the aspirin group had a compliance rate greater than 75%, which raises a question as to whether the effectiveness of aspirin was being tested. Low-dose aspirin therapy should not yet be dismissed for the prevention of preeclampsia, but be reconsidered with emphasis on compliance using doses of aspirin in the range of 100-150 mg/day combined with antioxidants.  相似文献   

19.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

20.
A peroxidase-linked immunoassay of the sandwich type was developed for a quantitative determination of the amount of human cyclooxygenase. Two species of monoclonal antibodies (hPES01 against the human enzyme and PES-5 against the bovine enzyme) were utilized, which recognized different epitopes on the cyclooxygenase of human platelets. The peroxidase activity of the immunoprecipitate was correlated with the amount of cyclooxygenase. The enzyme immunoassay was applied to platelets from 15 normal subjects and a clinical case of platelet cyclooxygenase abnormality with a prolonged bleeding time. Almost the same level of immunoreactive protein was found in platelets of both normal subjects and the patient. However, the solubilized enzyme from the patient's platelets did not transform arachidonic acid to prostaglandin H2 (PGH2) while thromboxane production from PGH2 was observed at a normal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号