首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration of polymorphonuclear leukocytes across epithelia is a hallmark of many inflammatory disease states. Neutrophils traverse epithelia by migrating through the paracellular space and crossing intercellular tight junctions. We have previously shown (Nash, S., J. Stafford, and J.L. Madara. 1987. J. Clin. Invest. 80:1104-1113), that leukocyte migration across T84 monolayers, a model human intestinal epithelium, results in enhanced tight junction permeability--an effect quantitated by the use of a simple, standard electrical assay of transepithelial resistance. Here we show that detailed time course studies of the transmigration-elicited decline in resistance has two components, one of which is unrelated to junctional permeability. The initial decrease in resistance, maximal 5-13 min after initiation of transmigration, occurs despite inhibition of transmigration by an antibody to the common beta subunit of neutrophil beta 2 integrins, and is paralleled by an increase in transepithelial short-circuit current. Chloride ion substitution and inhibitor studies indicate that the early-phase resistance decline is not attributable to an increase in tight junction permeability but is due to decreased resistance across epithelial cells resulting from chloride secretion. Since T84 cells are accepted models for studies of the regulation of Cl- and water secretion, our results suggest that neutrophil transmigration across mucosal surfaces (for example, respiratory and intestinal tracts) may initially activate flushing of the surface by salt and water. Equally important, these studies, by providing a concrete example of sequential transcellular and paracellular effects on transepithelial resistance, highlight the fact that this widely used assay cannot simply be viewed as a direct functional probe of tight junction permeability.  相似文献   

2.
In cell culture, both endothelial and epithelial cell monolayers have been found to generate structurally similar tight junctional complexes, as assessed by thin complexes of the two cell types are, at least in part, responsible for the very different permeability characteristics of native endothelial and epithelial cell monolayers. The purpose of this work was to compare cultured endothelial and epithelial cells with respect to the function of their tight junctional complexes in regulating the movement of macromolecules and ions across the cell monolayers, and define functional parameters to characterize the tight junctional complexes. Bovine aorta endothelial cells and T84 colonic carcinoma epithelial cells were cultured on a microporous membrane support. The permeability coefficients of inulin, albumin, and insulin were determined with the cell monolayers and compared with the permeability coefficients obtained with 3T3-C2 fibroblasts, a cell line that does not generate tight junctions. Electrical resistance measurements across the monolayer-filter systems were also compared. The permeability coefficient of albumin across the endothelial cell monolayer compared favorably with other reported values. Likewise, the electrical resistance across the T84 cell monolayer was in good agreement with published values. Utilizing permeability coefficients for macromolecules as an index of tight junction function, we found that a distinction between a lack of tight junctions (fibroblasts), the presence of endothelial tight junctions, and the presence of epithelial tight junctions was readily made. However, when utilizing electrical resistance as an index of tight junction function, identical measurements were obtained with fibroblasts and endothelial cells. This indicates that more than one index of tight junction function is necessary to characterize the junctional complexes. Although structurally similar, epithelial cell and endothelial cell tight junctions perform very different functions, and, from our data, we conclude that the demonstration of tight junctional structures by electron microscopy is not relevant to the functional nature of the junction: structure does not imply function. A minimal assessment of tight junction function should rely on both the determination of the electrical resistance across the cell monolayer, and the determination of the permeability coefficients of selected macromolecules.  相似文献   

3.
The effect of interleukin-4 (IL-4), a cytokine associated with allergy and inflammation, on the permeability of the intestinal epithelium was investigated. IL-4 reduced transepithelial electrical resistance (TER) and increased permeation to horseradish peroxidase (HRP) and Lucifer Yellow (LY) of human intestinal T84 cell monolayers. The increased permeation due to IL-4 treatment was also observed at 4 °C. The permeability of T84 cell monolayers to β-lactogulobulin (β-Lg), ovalbumin (OVA), and fluorescein isothiocyanate (FITC)-dextran of various molecular sizes was also high in the IL-4-treated cell monolayers. Sodium azide (NaN3), which inhibits ATP synthesis of the cells, did not inhibit the increases in these substances. Even 150 kDa FITC-dextran significantly permeated the T84 cells when the monolayers were treated with IL-4. These results suggest that fairly large molecules are able to permeate intestinal epithelial monolayers via the energy-independent paracellular pathway when the monolayers are exposed to excessive IL-4.  相似文献   

4.
Summary Epithelial cells are joined at their apical surfaces byzonulae occludentes. Claude and Goodenough (1973) demonstrated a correlation between the structure of thezonula occludens as seen in freeze-fracture preparations and the passive electrical permeability of several simple epithelia. In epithelia with high transepithelial resistance, thezonula occludens consisted of many strands. In epithelia with low transepithelial resistance thezonula occludens was much reduced, sometimes consisting of only one strand.Evidence is reviewed here that indicates that in a number of simple epithelia the structure of thezonula occludens is largely responsible for the magnitude of transepithelial conductance. An equation is derived relating transepithelial junctional resistance to the number of junctional strands:R=R min p –n whereR is the transepithelial resistance of thezonula occludens,R min is the minimum resistance of the junction (as when there areno strands in the zonula occludens),p is the probability a given strand is open andn is the number of strands in the junction. Using published experimental values ofR andn for different epithelia, the calculated value ofp was found to be as high as 0.4, which suggests that the strands in thezonula occludens are remarkably labile.Other morphological parameters relevant to transepithelial permeability are also considered, such as the width and depth of the intercellular spaces, and the size of the epithelial cells themselves.  相似文献   

5.
Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell-cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.  相似文献   

6.
Polycations, including protamine, have been reported to decrease the barrier integrity of cultured rat pulmonary type II epithelial monolayers. In contrast, protamine has been reported to increase the transepithelial electrical resistance of gallbladder epithelium. The present study was done using Madin Darby canine kidney epithelial cells (MDCK) to determine whether the effect of protamine on type II epithelial monolayers was species or organ specific or was dependent on the presence of nonepithelial cells and to investigate the effect of protamine on the actin cytoskeleton. Exposure of MDCK monolayers to protamine resulted in decreased transepithelial electrical resistance (Rt), increased short-circuit current (Isc) across the monolayers, and increased mannitol permeability (Pmann) of the monolayers. The decrease in Rt and increase in Isc was seen only after the addition of protamine to the apical surface of the cells. The importance of charge in this action was supported by the fact that exposure of the monolayer to the polycation poly-L-lysine also resulted in increased Pmann, and both the decreased Rt and increased Pmann seen after the addition of protamine were prevented if the monolayers were exposed in the presence of the polyanions heparin or sulfated dextran. The increase in Pmann appeared to be the result of increased permeability in the paracellular pathway, because increased mannitol uptake by the cells represented only a fraction of the increase in Pmann. Subtle changes in the actin cytoskeleton were seen after exposure of the monolayers to protamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
《The Journal of cell biology》1988,107(6):2401-2408
The relationship of tight junction permeability to junction structure and composition was examined using two strains of Madin-Darby canine kidney (MDCK) cells (I and II) which differ greater than 30-fold in transepithelial resistance. This parameter is largely determined by paracellular, and hence junctional, permeability under most conditions. When these two strains of cells were grown on permeable filter supports, they formed monolayers with equivalent linear amounts of junction/area of monolayer. Ultrastructural analysis of these monolayers by thin section EM revealed no differences in overall cellular morphology or in tight junction organization. Morphometric analysis of freeze-fractured preparations indicated that the tight junctions of these two cell strains were similar in both number and density of junctional fibrils. Prediction of transepithelial resistance for the two strains from this freeze-fracture data and a published structure-function formulation (Claude, P. 1978, J. Memb. Biol. 39:219- 232) yielded values (I = 26.5 omega/cm2, II = 35.7 omega/cm2) that were significantly lower than those observed (I = 2,500-5,000 omega/cm2, II = 50-70 omega/cm2). Consistent with these structural studies, a comparison of the distribution and cellular content of ZO-1, a polypeptide localized exclusively to the tight junction, revealed no significant differences in either the localization of ZO-1 or the amount of ZO-1 per micron of junction (I = 1,415 +/- 101 molecules/micron, II = 1,514 +/- 215 molecules/micron).  相似文献   

9.
Summary Epithelial cells establish tight junctions (TJs) that offer an ample range of transepithelial electrical resistances (TER), in adjustment to physiological requirements. In the present work, we demonstrate that cells from different animal origins, co-cultured in monolayers, can make sealed TJs, suggesting that this structure has a basic universal structure. TJs cannot be established, however, if one of the partners does not normally express TJs, indicating that each neighbor has to contribute its moiety. Furthermore, we observe that clones of the same cell line, with widely different values of TER, do not differ, in the number and length of their junctional trands, suggesting that the difference is due to their ability to express ionic channels traversing their strands. The value of TER achieved in mixed monolayers of cells of the same or different lines is the one that may be expected by taking into account the proportion of each type in the mixture and adding in parallel the electrical resistance that they exhibit in pure monolayers. Therefore, epithelial TJs appear to behave as parallel resistances.  相似文献   

10.
Active migration of polymorphonuclear leukocytes (PMN) through the intestinal crypt epithelium is a hallmark of inflammatory bowel disease and correlates with patient symptoms. Previous in vitro studies have shown that PMN transepithelial migration results in increased epithelial permeability. In this study, we modeled PMN transepithelial migration across T84 monolayers and demonstrated that enhanced paracellular permeability to small solutes occurred in the absence of transepithelial migration but required both PMN contact with the epithelial cell basolateral membrane and a transepithelial chemotactic gradient. Early events that occurred before PMN entering the paracellular space included increased permeability to small solutes (<500 Da), enhanced phosphorylation of regulatory myosin L chain, and other as yet undefined proteins at the level of the tight junction. No redistribution or loss of tight junction proteins was detected in these monolayers. Late events, occurring during actual PMN transepithelial migration, included redistribution of epithelial serine-phosphorylated proteins from the cytoplasm to the nucleus in cells adjacent to migrating PMN. Changes in phosphorylation of multiple proteins were observed in whole cell lysates prepared from PMN-stimulated epithelial cells. We propose that regulation of PMN transepithelial migration is mediated, in part, by sequential signaling events between migrating PMN and the epithelium.  相似文献   

11.
The experimental opening and resealing of occluding junctions in monolayers of cultured MDCK cells (epithelioid of renal origin) was explored by measuring changes in the electrical resistance across the monolayer and by freeze-fracture electron microscopy. As in natural epithelia, the function of occluding junctions as permeability barriers specifically depends on extracellular Ca++ concentration and fails if this ion is replaced by Mg++ or Ba++. The removal of Ca++ and the addition of EGTA to the bathing medium opened the junctions and reduced the transepithelial resistance. Resealing was achieved within 10-15 min by restoring Ca++. Quantitative freeze-fracture electron microscopy showed that junctional opening, caused by lack of Ca++, was accompanied by simplification of the pattern of the membrane strands of the occluding junction without disassembly or displacement of the junctional components. Resealing of the cellular contacts involved the gradual return to a normal junctional pattern estimated as the average number of strands constituting the junction. The occluding junctions were also opened by the addition of the ionophore A23187, suggesting that the sealing of the contacts requires high Ca++ on the extracellular side and low Ca++ concentration of the cytoplasmic compartment. The opening process could be blocked by low temperature (7.5 degrees C). Resealing did not depend on serum factors and did not require protein synthesis; therefore, it seems to be caused by reassembly of preexisting membrane junctional components. The restoration of the junctions occurred simultaneously with the establishment of ion-selective channels; the Na+/Cl- and the cation/cation selectivity were recovered with the same time-course as the electrical resistance. The role of the cytoskeleton in the process of junctional reassembly is reported in the companion article.  相似文献   

12.
The function of occludin (Occ) in the tight junction is undefined. To gain insight into its role in epithelial cell biology, occludin levels in Madin-Darby canine kidney II cells were suppressed by stably expressing short interfering RNA. Suppression of occludin was associated with a decrease in claudins-1 and -7 and an increase in claudins-3 and -4. Claudin-2 levels were unaffected. The tight junction "fence" function was not impaired in suppressed Occ (Occ–) clones, as determined by BODIPY-sphingomyelin diffusion in the membrane. The most striking changes were those related to control of the cytoskeleton and the "gate" function of tight junctions. A reduced ability of Occ– clones to extrude apoptotic cells from the monolayers suggested that neighbors of apoptotic cells either failed to sense their presence or were unable to coordinate cytoskeletal activity necessary for their extrusion. To further test the extent to which actin cytoskeletal activity depends on the presence of occludin, Occ– and Occ+ monolayers were depleted of cholesterol. Previous studies showed that cholesterol depletion is associated with reorganization of the actin cytoskeleton and a fall in transepithelial electrical resistance. In contrast to control Occ (Occ+) cells, transepithelial electrical resistance did not fall significantly in cholesterol-depleted Occ– monolayers and they failed to generate Rho-GTP, one of the signaling molecules involved in regulating the actin cytoskeleton. While steady-state transepithelial electrical resistance was similar in all clones, tight junction permeability to mono- and divalent inorganic cations was increased in Occ– monolayers. In addition, there was a disproportionately large increase in permeability to monovalent organic cations, up to 6.96 Å in diameter. Chloride permeability was unaffected and there was little change in mannitol flux. The data suggest that occludin transduces external (apoptotic cells) and intramembrane (rapid cholesterol depletion) signals via a Rho signaling pathway that, in turn, elicits reorganization of the actin cytoskeleton. Impaired signaling in the absence of occludin may also alter the dynamic behavior of tight junction strands, as reflected by an increase in permeability to large organic cations; the permeability of ion pores formed of claudins, however, is less affected. tight junction; occludin; Rho-GTP  相似文献   

13.
The BeWo cell line (b30 clone) has been examined as a potentialin vitro system to study transplacental transport. At the light andelectron microscope level, the cells were observed to form confluentmonolayers on polycarbonate filters in ~5 days and morphologicallyresembled the typical human trophoblast. BeWo monolayers developed amodest transepithelial electrical resistance and a molecularsize-dependent permeability to hydrophilic passive diffusion markers,fluorescein, and selected fluorescein-labeled dextrans. Linoleic acidpermeation across BeWo monolayers was asymmetric, saturable, andinhibited by low temperature and excess competing fatty acid. Forskolinand 8-bromoadenosine 3',5'-cyclic monophosphate treatmentsstimulated morphological changes in BeWo cultures and enhanced theasymmetric passage of linoleic acid across the BeWo monolayers whilehaving minimal effects on passive permeability, affirming that thedifferentiation state of the cells can influence membrane transportersand transmonolayer permeability. The basic permeability properties ofthe BeWo monolayers suggest that the cells grown on permeable supportsmay be examined as a convenient in vitro system to evaluate sometransplacental transport mechanisms.

  相似文献   

14.
Recent evidence suggests that the conditionally essential amino acid glutamine is important for intestinal barrier function. However, the mechanism remains undefined. To determine the effects of glutamine on permeability of intestinal epithelial cell monolayers, Caco-2 cells were grown on membrane filters and exposed to 4 mmol/L sodium butyrate in order to rapidly achieve high levels of alkaline phosphatase and high transepithelial resistance as seen in functionally mature enterocytes. A standard method of medium exchange consisting of removal and replacement resulted in a catastrophic loss of transepithelial resistance and increase of mannitol and dextran fluxes that required 2-4 hrs and protein synthesis to recover. The effect was attributed to exposure of the upper monolayer surface to atmosphere and could be avoided by refeeding by incremental perfusion. Spontaneously-differentiated Caco-2 monolayers were resistant to this stress. This novel stress test was employed as a sensitive assay for the requirement of glutamine for monolayer transepithelial resistance and mannitol permeability. Pre-stress glutamine availability was more important than Gln-availability during the recovery phase. Thus the transepithelial resistance and permeability of butyrate-induced monolayers is dynamically-regulated in response to atmospheric exposure, by a mechanism that depends on threshold levels of glutamine availability.  相似文献   

15.
The effect of the uncoupler of oxidative phosphorylation, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), on the tight junction of Madin-Darby canine kidney cells was examined. FCCP induced an abrupt decrease in the transepithelial electrical resistance of the confluent monolayers over a period of 20 s. When FCCP was withdrawn from the incubation medium, the monolayer resistance recovered to close to the original level in less than 2 h. Staining of the tight junction-associated protein ZO-1 showed that the changes in transepithelial electrical resistance were accompanied by a diffusing of the protein away from cell peripheries and a reconcentration to the tight junction areas following resistance recovery. Intracellular pH was decreased by FCCP on a similar time-scale with no obvious changes in ATP levels over this time-course. These data suggest that the uncoupler FCCP has a profound effect on tight junction permeability and cellular distribution of the tight junction protein ZO-1 in the epithelial cells and that it probably acts by breaking down proton gradients and altering intracellular pH.  相似文献   

16.
Vectorial transport in the thyroid epithelium requires an efficient barrier against passive paracellular flux, a role which is principally performed by the tight junction (zonula occludens). There is increasing evidence that tight junction integrity is determined by integral and peripheral membrane proteins which interact with the cell cytoskeleton. Although the contribution of the actin cytoskeleton to tight junction physiology has been intensively studied, less is known about possible interactions with microtubules. In the present study we used electrophysiological and immunohistochemical approaches to investigate the contribution of microtubules to the paracellular barrier in cultured thyroid cell monolayers which displayed a high transepithelial electrical resistance (6000-9000 ohm · cm2). Colchicine (1 μM) caused a progressive fall in electrical resistance to <10% of baseline after 6 h and depolarization of the transepithelial electrical potential difference consistent with a significant increase in paracellular permeability. The effect of colchicine on TER was not affected by agents which inhibit the major apical conductances of thyroid cells but was reversed upon removal of the drug. Immunofluorescent staining for tubulin combined with confocal laser scanning microscopy demonstrated that thyroid cells possessed a dense microtubule network extending throughout the cytoplasm which was destroyed by colchicine. Colchicine also produced changes in the localization of the tight junction-associated protein, ZO-1: its normally continuous junctional distribution was disrupted by striking discontinuities and the appearance of many fine strands which extended into the cytoplasm. A similar disruption in E-cadherin staining was also observed, but colchicine did not affect the distribution of vinculin associated with adherens junctions nor the integrity of the perijunctional actin ring. We conclude that microtubules are necessary for the functional and structural integrity of tight junctions in this electrically tight, transporting epithelium.  相似文献   

17.
Intestinal bacteria play an etiologic role in triggering and perpetuating chronic inflammatory bowel disorders. However, the precise mechanisms whereby the gut microflora influences intestinal cell function remain undefined. Therefore, the effects of the non-pathogenic prototype translocating Escherichia coli, strain C25 on the barrier properties of human T84 and Madine-Darby canine kidney type 1 epithelial cells were examined. T-84 cells were also infected with commensal E. coil, strains F18 and HB101, and enterohaemorrhagic E. coli, serotype O157:H7. Strains F18 and HB101 had no effect on transepithelial electrical resistance (TER) of T84 monolayers. By contrast, epithelial cells infected with strain C25 displayed a time-dependent decrease in TER, preceded by an altered distribution of the cytoskeletal protein alpha-actinin, comparable to infection with E. coli O157:H7. E. coli C25 infection also led to activation of nuclear factor kappaB (NF-kappaB), interleukin-8 secretion and alterations in localization of claudin-1, but not zona occludens-1 or claudin-4, in T84 cells. There were adherent C25 bacteria on the intact apical surface of infected T84 cells, while mitochondria appeared swollen and vacuolated. These novel findings demonstrate the ability of a translocating commensal bacterium to adhere to and modulate intestinal epithelial barrier function and to induce morphological changes in a manner distinct from the known enteric pathogen, E. coli O157:H7.  相似文献   

18.
Mirza H  Wu Z  Teo JD  Tan KS 《Cellular microbiology》2012,14(9):1474-1484
Blastocystis is an enteric parasite that causes acute and chronic intestinal infections, often non-responsive to conventional antibiotics. The effects of Blastocystis infections on human epithelial permeability are not known, and molecular mechanisms of Blastocystis-induced intestinal pathology remain unclear. This study was conducted to determine whether Blastocystis species alters human intestinal epithelial permeability, to assess whether these abnormalities are rho kinase (ROCK)-dependent, and to investigate the therapeutic potential of the HMG-CoA reductase inhibitor Simvastatin in altered intestinal epithelial barrier function. The effect of metronidazole resistant (Mz(r) ) Blastocystis isolated from a symptomatic patient on human colonic epithelial monolayers (Caco-2) was assessed. Modulation of enterocyte myosin light chain phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, transepithelial resistance, cytoskeletal F-actin and tight junctional zonula occludens-1 (ZO-1) by parasite cysteine proteases were measured in the presence or absence of HMG-CoA reductase and ROCK inhibition. Blastocystis significantly decreased transepithelial resistance, increased epithelial permeability, phosphorylated myosin light chain and reorganized epithelial actin cytoskeleton andZO-1. Thesealterations were abolished byinhibition of enterocyte ROCK, HMG-CoA reductase and parasite cysteine protease. Our findings suggest that cysteine proteases of Mz(r) Blastocystis induce ROCK-dependent disruption of intestinal epithelial barrier function and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1. Simvastatin prevented parasite-induced barriercompromise, suggesting a therapeutic potential of statins in intestinal infections.  相似文献   

19.
Clostridium difficile toxin A increases paracellular permeability in colonic epithelial T84 cells by mechanisms involving RhoA glucosylation and actin depolymerization. However, we previously observed that toxin A-mediated decline in transepithelial electrical resistance preceded changes in cell morphology and tight junction ultrastructure (Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988) J. Clin. Invest. 82, 1516-1524). Recent studies also showed that C. difficile toxins induce early cellular responses, including activation of mitogen-activated protein kinases, generation of reactive oxygen metabolites, and calcium influx. The aim of this study was to investigate whether toxin A-induced early cellular responses contribute to the permeability changes. We found that toxin A stimulated the activities of membrane and cytosolic protein kinase Calpha (PKCalpha) and cytosolic PKCbeta. A specific PKCalpha/beta antagonist (myristoylated PKCalpha/beta peptide) blocked toxin A-mediated RhoA glucosylation. Furthermore, decreased transepithelial electrical resistance and increased translocation of ZO-1 from tight junction occurred within 2-3 h of toxin A exposure and were also inhibited by PKCalpha/beta antagonist. During this time period, toxin exposure did not induce translocation of ZO-2, dephosphorylation or translocation of occludin, or cell rounding. Our data indicate that PKC signaling regulates toxin A-mediated paracellular permeability changes and ZO-1 translocation.  相似文献   

20.
Activation of the Rho GTPase Cdc42 has been shown in endothelial cell monolayers to prevent disassembly of interendothelial junctions and the increase in endothelial permeability. Here, we addressed the in vivo role of Cdc42 activity in mediating endothelial barrier protection in lungs by generating mice expressing the dominant active mutant V12Cdc42 protein in vascular endothelial cells targeted via the VE-cadherin promoter. These mice developed normally and exhibited constitutively active GTP-bound Cdc42. The increase in lung vascular permeability and gain in tissue water content in response to intraperitoneal lipopolysaccharide challenge (7 mg/kg) were markedly attenuated in the transgenic mice. To address the basis of the protective effect, we observed that expression of V12Cdc42 mutant in endothelial monolayers reduced the decrease in transendothelial electrical resistance, a measure of opening of interendothelial junctions, thus indicating that Cdc42 activity preserved junctional integrity. RhoA activity in V12Cdc42-expressing endothelial monolayers was reduced compared with untransfected cells, suggesting that activated Cdc42 functions by counteracting the canonical RhoA-mediated mechanism of endothelial hyperpermeability. Therefore, Cdc42 activity of microvessel endothelial cells is a critical determinant of junctional barrier restrictiveness and may represent a means of therapeutically modulating increased lung vascular permeability and edema formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号