首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While phorbol ester-binding sites within protein kinase C alpha (PKCalpha) have been identified and characterized utilizing fragments of the enzyme, it remains unclear whether additional regions within the enzyme may play an important role in its ability to be activated by phorbol ester. To examine this hypothesis, we generated 20 glutathione-S-transferase-tagged, V1-deficient, human PKCalpha holoenzyme constructs in which tandem six or 12 amino acid residue stretches along the full regulatory domain were changed to alanine residues. Each protein was assessed for its ability to bind phorbol ester and to induce growth repression when its catalytic activity was activated by phorbol ester upon expression in yeast cells. Mutagenesis of residues 99-158 potently reduced phorbol binding, consistent with previously published findings on the importance of the C1b region in phorbol binding. In addition, we identified a number of regions within the PKC regulatory domain that, when mutagenized, blocked the activation of PKC-mediated growth repression by phorbol ester while actually enhancing phorbol ester binding in vitro (residues 33-62, and 75-86). This study thus helps distinguish regions important for phorbol binding from regions important for the ability of phorbol ester to activate the enzyme. Our findings also suggest that multiple regions within C2 are necessary for full activation of the enzyme by phorbol ester, in particular residues 231-254. Finally, three regions, when mutagenized, completely, blocked catalytic domain activity in vivo (residues 33-62, 75-86, and 123-146), underscoring the important role of regulatory domain sequences in influencing catalytic domain function, even in the absence of the V1 region containing the pseudosubstrate sequence. This is the first tandem mutagenesis study for PKC that assesses the importance of regions for both phorbol binding and for phorbol-dependent activation in the context of the entire holoenzyme.  相似文献   

3.
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.  相似文献   

4.
The characteristics of PKC activation induced by a number of compounds were investigated using PKCs, partially-purified from sources with a naturally high abundance of certain Ca2+ dependent PKC isoforms. Native isoforms were used rather than PKC isoforms expressed from a baculovirus system to assess the effect of tissue specific factors on activity. However, some data using recombinant PKC were included for comparison.The presence of specific PKC isoforms in different tissues was determined using Western blot analysis. Protein kinase C , 1, , , and / were all present in rat midbrain cytosolic extract, PKC , 1, , and / were present in spleen cytosol, and PKC and / were present in COS 7 cell cytosol. The predominance of and activities in COS 7 and spleen extracts respectively was confirmed by enzymic assay.The PKC activity assay was configured such that the Ca2+ dependence of the PKC activity induced by different PKC activators could be determined. Phorbol 12,13-dibutyrate (PDBu) was virtually equipotent on the Ca2+-dependent PKC activity from midbrain and spleen and slightly less potent on that from COS 7 cells. In the absence of Ca2+, PDBu was considerably less potent overall (as, indeed, were the other PKC activators) and was less potent on COS 7 cell PKC than on those from midbrain or spleen. Mezerein was more potent than PDBu at inducing PKC activity in COS 7 cell extracts in either the absence or presence of Ca2+ whereas in the presence of Ca2+, mezerein was slightly less potent on midbrain and spleen than PDBu and equipotent in the absence of Ca2+. Maximum values for Ca2+-independent activation by mezerein indicated that this activator was particularly effective in recruiting Ca2+-dependent PKC isoform activity in a Ca2+ free environment. The greater potency of mezerein on PKC was confirmed using PKC and further purified from rat spleen by hydroxylapatite (HAP) chromatography. The effects of both PDBu and mezerein were investigated using anterior pituitary tissue where a particularly high potency of mezerein in the absence of Ca2+ was noted. The diacylglycerol, 1,2-dioctanoyl-sn-glycerol (DOG), appeared to cause little or no activation of native Ca2+-dependent isoforms in Ca2+ free conditions unlike another longer chain diacylglycerol, 1,2-dioleoyl-sn-glycerol. Also DOG activated midbrain PKCs more potently than PKCs from spleen or COS 7 cells (or lung and pituitary tissue) in the presence of Ca2+. The concentration-dependence of DOG was examined on PKC and PKC further purified from brain by HAP chromatography, revealing that DOG was equally potent on both of these isoforms derived from brain and on recombinant PKC . However, [3H]PDBu binding data using PKC purified from several sources gave very different IC50 values when DOG was used as a displacer, and in general these values correlated with the EC50 values recorded from the activity assay.The data presented here indicate that there are distinct differences in the activator pharmacology of different native PKC isoforms and between the same isoform expressed in different tissues, either because of post-translational modifications or some other tissue specific factor.  相似文献   

5.
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.  相似文献   

6.
The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.  相似文献   

7.
The 130 kDa atrial natriuretic factor receptor (ANF-R1) purified from bovine adrenal zona glomerulosa is phosphorylated in vitro by serine/threonine protein kinases such as cAMP-, cGMP-dependent and protein kinase C. This phosphorylation is independent of the presence of ANF (99–126) and there is no detectable intrinsic kinase activity associated with the ANF-R1 receptor or with its activated form. In bovine adrenal zona glomerulosa cells, TPA (phorbol ester) induces a marked inhibition of the ANF-stimulated cGMP accumulation as well as of the membrane ANF-sensitive guanylate cyclase catalytic activity without any change in the binding capacity or affinity for 125I-ANF. However, we have demonstrated a significant 32P incorporation in the ANF-R1 receptor of the TPA-treated cells. The effect of TPA on the zona glomerulosa ANF-R1 receptors was abolished by calphostin C, a specific protein kinase C inhibitor. Altered ANF actions due to blunted response of guanylate cyclase to ANF could be a consequence of the ANF receptor phosphorylation by excessive activity of protein kinase C and might be involved in the pathogenesis of hypertension.Abbreviations ANF Atrial Natriuretic Factor - ANF-R1 Atrial Natriuretic Factor Receptor, subtype 1 - ATP Adenosine Triphosphate - CaCl2 Calcium Chloride - cAMP Adenosine cyclic 3,5-Monophosphate acid - cGMP Guanosine cyclic 35-Monophosphate acid - EDC 1-Ethyl-3-[3-Dimethylaminopropyl] Carbodiimide - EDTA Ethylenediaminetetraacetic Acid - GTP Guanosine Triphosphate - IBMX 3-isobutyl-1-methylxanthine - kDa Kilodaltons - MgCl2 Magnesium Chloride - MgAC Magnesium Acetate - NaCl Sodium Chloride - PAGE Polyacrylamide Gel Electrophoresis - PKA cAMP-dependent protein kinase - PKG cGMP-dependent Protein Kinase - PKC Calcium/Phospholipid-dependent Protein Kinase - RIA Radioimmunoassay - SDS Sodium Dodecyl Sulfate - SHR Spontaneously Hypertensive Rat - Tris HCl Tris (Hydroxymethyl) aminomethane Hydrochloride - TPA 12-O-Tetradecanoyl-Phorbol-13-Acetate  相似文献   

8.
Estrogen activates protein kinase C in neurons: role in neuroprotection   总被引:10,自引:0,他引:10  
It has been previously demonstrated that estrogen can protect neurons from a variety of insults, including beta-amyloid (Abeta). Recent studies have shown that estrogen can rapidly modulate intracellular signaling pathways involved in cell survival. In particular, estrogen activates protein kinase C (PKC) in a variety of cell types. This enzyme plays a key role in many cellular events, including regulation of apoptosis. In this study, we show that 17beta-estradiol (E2) rapidly increases PKC activity in primary cultures of rat cerebrocortical neurons. A 1 h pre-treatment with E2 or phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, protects neurons against Abeta toxicity. Protection afforded by both PMA and E2 is blocked by pharmacological inhibitors of PKC. Further, depletion of PKC levels resulting from prolonged PMA exposure prevents subsequent E2 or PMA protection. Our results indicate that E2 activates PKC in neurons, and that PKC activation is an important step in estrogen protection against Abeta. These data provide new understanding into the mechanism(s) underlying estrogen neuroprotection, an action with therapeutic relevance to Alzheimer's disease and other age-related neurodegenerative disorders.  相似文献   

9.
10.
The effect of an anticoagulant and cytoprotector blood serine proteinase--activated protein C (APC)--on survival of cultured hippocampal and cortical neurons under conditions of glutamate-induced excitotoxicity has been studied. Low concentrations of APC (0.01-10 nM) did not cause neuron death, but in the narrow range of low concentrations APC twofold and stronger decreased cell death caused by glutamate toxicity. High concentrations of APC (>50 nM) induced the death of hippocampal neurons similarly to the toxic action of glutamate. The neuroprotective effect of APC on the neurons was mediated by type 1 proteinase-activated receptor (PAR1), because the inactivation of the enzyme with phenylmethylsulfonyl fluoride or PAR1 blockade by a PAR1 peptide antagonist ((Tyr1)-TRAP-7) prevented the protective effect of APC. Moreover, APC inhibited the proapoptotic effect of 10 nM thrombin on the neurons. Geldanamycin, a specific inhibitor of heat shock protein Hsp90, completely abolished the antiapoptotic effect of 0.1 nM APC on glutamate-induced cytotoxicity in the hippocampal neurons. Thus, APC at low concentrations, activating PAR1, prevents the death of hippocampal and cortical neurons under conditions of glutamate excitotoxicity.  相似文献   

11.
A calcium-sensitive, phospholipid-dependent protein kinase (protein kinase C) and its three isozymes were purified from rat heart cytosolic fractions utilizing a rapid purification method. The purified protein kinase C enzyme showed a single polypeptide band of 80 KDa on SDS-polyacrylamide gel electrophoresis, and was totally dependent on the presence of Ca2+ and phospholipid for activity. Diacylglycerol was also found to stimulate enzymatic activity. Autophosphorylation of the purified PKC showed an 80 KDa polypeptide. The identity of the purified protein was also verified with monoclonal antibodies specific for PKC. Further fractionation of the purified PKC on a hydroxylapatite column yielded three distinct peaks of enzyme activity, corresponding to type I, II and III based on similar chromatographic behaviour as the rat brain enzyme. All three forms were entirely Ca2– and phosphatidylserine dependent. Type II was found to be the most abundant. Type I was found to be highly unstable. PKC activity studies demonstrate that types II and III isozymic forms are different with respect to their sensitivity to Ca2+.Abbreviations PKC Protein Kinase C - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - Km Michaelis constant - NBT Nitro-Blue Tetrazolium - BCIP 5-Bromo-4-Chloro-3-Indolyl Phosphate  相似文献   

12.
To better understand metabotropic/ionotropic integration in neurons we have examined the regulation of M1 muscarinic acetylcholine (mACh) receptor signalling in mature (> 14 days in vitro), synaptically-active hippocampal neurons in culture. Using a protocol where neurons are exposed to an EC(50) concentration of the muscarinic agonist methacholine (MCh) prior to (R1), and following (R2) a desensitizing pulse of a high concentration of this agonist, we have found that the reduction in M(1) mACh receptor responsiveness is decreased in quiescent (+tetrodotoxin) neurons and increased when synaptic activity is enhanced by blocking GABA(A) receptors with picrotoxin. The picrotoxin-mediated effect on M1 mACh receptor responsiveness was completely prevented by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor blockade. Inhibition of endogenous G protein-coupled receptor kinase 2 by transfection with the non-G(q/11)alpha-binding, catalytically-inactive (D110A,K220R)G protein-coupled receptor kinase 2 mutant, decreased the extent of M1 mACh receptor desensitization under all conditions. Pharmacological inhibition of protein kinase C (PKC) activity, or chronic phorbol ester-induced PKC down-regulation had no effect on agonist-mediated receptor desensitization in quiescent or spontaneously synaptically active neurons, but significantly decreased the extent of receptor desensitization in picrotoxin-treated neurons. MCh stimulated the translocation of diacylglycerol- sensitive eGFP-PKCepsilon, but not Ca2+/diacylglycerol-sensitive eGFP-PKCbetaII in both the absence, and presence of tetrodotoxin. Under these conditions, MCh-stimulated eGFP-myristoylated, alanine-rich C kinase substrate translocation was dependent on PKC activity, but not Ca2+/calmodulin. In contrast, picrotoxin-driven translocation of myristoylated, alanine-rich C kinase substrate was accompanied by translocation of PKCbetaII, but not PKCepsilon, and was dependent on PKC and Ca2+/calmodulin. Taken together these data suggest that the level of synaptic activity may determine the different kinases recruited to regulate M1 mACh receptor desensitization in neurons.  相似文献   

13.
14.
Fc receptors are known to express on the surface of mature monocytes macrophages and lymphocytes. In this study a ligand e.g. liposomal IgG (human IgG coupled to PE-liposome via carbodimide reaction) was developed to ligate the Fc receptor of macrophages. When liposomal IgG was incubated with macrophages at 37°C for 5 min, it induced the macrophage activation which suppress the parasite burden approximatley to an extent of 60%, 50% and 45%, when macrophages were infected with UR6, AG83 and GE1 strains of L-donovani respectively. Superior efficacy of liposomal IgG were achieved compared to the treatment with free IgG and free liposomes. The activity of protein kinase C (PKC) has been found to be higher in the Fc receptor targeted macrophage membrane fraction, suggesting its translocation from the cytosol. Staurosporine, a potent inhibitor of the enzyme protein kinase C (PKC) has been found to protect the parasite inside the macrophage indicating the role of PKC in the signaling process. The liposomal IgG treatment has been found to induce the generation of significant amount of superoxide and hydrogen peroxide which helped to suppress the parasite burden. Further when liposomal IgG were incubated with IFN- primed, LPS activated macrophages, a significant amount of NO release was also noticed, indicating its role in parasite killing. The above results suggest that Fc receptor mediated activation by liposomal IgG may be used as an alternative approach to kill parasites intracellularly.  相似文献   

15.
Myelin basic protein, an 80-kilodalton (kDa) protein in rat oligodendrocytes, and an 80-kDa basic protein in neuroblastoma x neonatal Chinese hamster brain explant hybrids were phosphorylated extensively when the cells were treated with either phorbol esters (TPA) or diacylglycerols (e.g., oleyoyl-acetylglycerol). TPA-stimulated phosphorylation was inhibited by pre-incubation with 50 microM psychosine (galactosyl-sphingosine), confirming that it is mediated through the phospholipid-dependent protein kinase C (PK-C). Surprisingly, phosphorylation of these proteins was inhibited by incubation of cells with agents which result in activation of cyclic-AMP-dependent protein kinase (dibutyryl cyclic AMP or forskolin). In contrast, phosphorylation of other nonbasic proteins, for example, the oligodendrocyte-specific 2',3'-cyclic nucleotide phosphohydrolase, was stimulated under these conditions (Vartanian et al.: Proceedings of the National Academy of Sciences of the United States of America 85:939, 1988). The possible role of cyclic AMP in activating specific phosphatases or restricting the availability of diacylglycerol for PK-C activation is discussed.  相似文献   

16.
The properties of protein kinase C (PKC) activity have been studied in cytosolic and membrane fractions from rat and human prostate. Ion exchange chromatography indicated the existence of different PKC isoforms, PKC from rat ventral prostate behaved as a classical Ca2+- and phospholipid-dependent enzyme and was activated by 1,2-diacylglycerol as well as by high concentrations of arachidonic acid. PKC activity in the cytosolic fraction was higher and presented different cofactor requirements than that in the membrane fraction. PKC from human benign hyperplastic prostate was also phospholipid dependent, activated by tumor-promotong phorbol esters, and appeared to belong to the group of PKC isozymes which lack Ca2+ sensitivity. Human prostatic PKC activity appeared to be of similar nature in both membrane and cytosolic fractions but the specific activity was higher in the particulate preparation which could be related to the stage of endogenous activation of the enzyme. These results extend previous observations in rat ventral prostate and present evidences on the human counterpart. Forthcoming experiments are needed to establish the exact nature of PKC isozymes and their physiological and pathophysiological role in this gland.  相似文献   

17.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

18.
Microsomes were prepared from cultured neonatal rat cardiomyocytes. Incubation of microsomes in buffer containing 5µM CaCl2, 5 mM cholate and 100 nM [3H-]Phosphatidylinosito14,5-bisphosphate (PtdIns(4,5) P2) resulted in the formation of [3H-]InsP 3. GTP-gamma-S (125 µM) stimulated the production of [3H-]InsP 3. Microsomes prepared from phorbol ester-treated (100 nM phorbol 12-myristate 13-acetate, PMA) cardiomyocytes showed decreased activities of basal as well as GTP-gamma-S-stimulated [3H-]Ptdlns(4,5)P 2 hydrolysis. In the microsomes a 15 kD protein was demonstrated to be the major substrate phosphorylated by intrinsic protein kinase C, which was activated by 0.5 mM Ca2+. Addition of phorbol ester (100 nM PMA) enhanced the 32P-incorporation into the 15 kD protein. Protein kinase C, purified from rat brain, in the presence of Ca2+, diglyceride, and phosphatidylserine did not change the phosphorylation pattern any further. In conclusion, it was shown that phorbol ester pretreatment of neonatal rat cardiomyocytes reduces microsomel GTP-gamma-S-stimulated Ptdlns(4,5)P 2-specific phospholipase C activity, as estimated with exogenous substrate, and that in cardiomyocyte microsomes phorbol ester activates protein kinase C-induced 15 kD protein phosphorylation. The results indicate that phorbol ester may down-regulate -adrenoceptor mediated Ptdlns(4,5)P 2 hydrolysis by activation of protein kinase C-induced 15 kD protein phosphorylation.List of abbreviations ATP Adenosine 5-Trphosphate - CSU Catalytic Subunit of cyclic AMP-dependent protein kinase - DG Diacylglycerol - DMSO Dimethylsulfoxide - DTT DL-dithiothreitol - EDTA Ethylenedinitrilotetraacetic Acid - EGTA Ethyleneglycol-0,0-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - GTP-gamma-S Guanosine 5-O-(3-thiotriphosphate) - HPTLC High Performance Thin Layer Chromatography - InsP 3 Inositol monophosphate - InsP 2 Inositol bisphosphate - InsP 3 Inositol trisphosphate - MES 2-Morpholinoethanesulfonic acid - MOPS 3-[N-Morpholino]Propanesulfonic acid - PAGE Polyacrylamide-gel Electrophoresis - PKC Protein Kinase C - PLase C Phospholipase C - PMA Phorbol 12-Myristate 13-Acetate - PMSF Phenylmethylsulfonyl Fluoride - PtdSer Phosphatidylserine - PtdIns Phosphatidyl inositol - PT Pertussis Toxin - Ptdlns(4)P Phosphatidylinositol 4-monophosphate - Ptdlns (4,5)PZ-Phosphatidylinositol4,5-bisphosphate - SDS-Sodium Dodecyl Sulfate Tris-Tris(hydroxymethyl) aminomethane  相似文献   

19.
20.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号