首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehalorespiring Desulfitobacterium hafniense strain Y51 efficiently dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by PceA reductive dehalogenase encoded by the pceA gene. In a previous study, we found that the significant growth inhibition of strain Y51 occurred in the presence of commercial cis-DCE. In this study, it turned out that the growth inhibition was caused by chloroform (CF) contamination of cis-DCE. Interestingly, CF did not affect the growth of PCE-nondechlorinating SD (small deletion) and LD (large deletion) variants, where the former fails to transcribe the pceABC genes caused by a deletion of the promoter and the latter lost the entire pceABCT gene cluster. Therefore, PCE-nondechlorinating variants, mostly LD variant, became predominant, and dechlorination activity was significantly reduced in the presence of CF. Moreover, such a growth inhibitory effect was also observed in the presence of carbon tetrachloride at 1 microM, but not carbon dichloride even at 1 mM.  相似文献   

2.
Corrinoids are essential cofactors of reductive dehalogenases in anaerobic bacteria. Microorganisms mediating reductive dechlorination as part of their energy metabolism are either capable of de novo corrinoid biosynthesis (e.g., Desulfitobacterium spp.) or dependent on exogenous vitamin B12 (e.g., Dehalococcoides spp.). In this study, the impact of exogenous vitamin B12 (cyanocobalamin) and of tetrachloroethene (PCE) on the synthesis and the subcellular localization of the reductive PCE dehalogenase was investigated in the Gram-positive Desulfitobacterium hafniense strain Y51, a bacterium able to synthesize corrinoids de novo. PCE-depleted cells grown for several subcultivation steps on fumarate as an alternative electron acceptor lost the tetrachloroethene-reductive dehalogenase (PceA) activity by the transposition of the pce gene cluster. In the absence of vitamin B12, a gradual decrease of the PceA activity and protein amount was observed; after 5 subcultivation steps with 10% inoculum, more than 90% of the enzyme activity and of the PceA protein was lost. In the presence of vitamin B12, a significant delay in the decrease of the PceA activity with an ∼90% loss after 20 subcultivation steps was observed. This corresponded to the decrease in the pceA gene level, indicating that exogenous vitamin B12 hampered the transposition of the pce gene cluster. In the absence or presence of exogenous vitamin B12, the intracellular corrinoid level decreased in fumarate-grown cells and the PceA precursor formed catalytically inactive, corrinoid-free multiprotein aggregates. The data indicate that exogenous vitamin B12 is not incorporated into the PceA precursor, even though it affects the transposition of the pce gene cluster.  相似文献   

3.
Desulfitobacterium hafniense strain Y51 dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by the action of the PceA reductive dehalogenase encoded by pceA. The pceA gene constitutes a gene cluster with pceB, pceC, and pceT. However, the gene components, except for pceA, still remained to be characterized. In the present study, we characterized the function of PceT. PceT of strain Y51 showed a sequence homology with trigger factor proteins, although it is evolutionally distant from the well-characterized trigger factor protein of Escherichia coli. The PceT protein tagged with 6x histidine was expressed as a soluble form in E. coli. The recombinant PceT fusion protein exhibited peptidyl-proryl cistrans isomerase activity toward the chromogenic peptide N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The PceT fusion protein also exhibited chaperon activity towards the chemically denatured citrate synthase. Immunoprecipitation analysis using antibodies raised against PceA and PceT demonstrated that PceT specifically binds to the precursor form of PceA with an N-terminal twin-arginine translocation (TAT) signal sequence. On the other hand, PceT failed to bind the mature form of PceA that lost the TAT signal sequence. This is the first report in dehalorespiring bacteria, indicating that PceT is responsible for the correct folding of the precursor PceA.  相似文献   

4.
5.
Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two reductive dehalogenase genes, a lower number than reported in most other dehalorespiring strains. More than 50 members of the dimethyl sulfoxide reductase superfamily and 30 paralogs of the flavoprotein subunit of the fumarate reductase are encoded as well. A remarkable feature of the genome is the large number of O-demethylase paralogs, which allow utilization of lignin-derived phenyl methyl ethers as electron donors. The large genome reveals a more versatile microorganism that can utilize a larger set of specialized electron donors and acceptors than previously thought. This is in sharp contrast to the PCE-dechlorinating strain Dehalococcoides ethenogenes 195, which has a relatively small genome with a narrow metabolic repertoire. A genomic comparison of these two very different strains allowed us to narrow down the potential candidates implicated in the dechlorination process. Our results provide further impetus to the use of desulfitobacteria as tools for bioremediation.  相似文献   

6.
7.
Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNA(Pyl). The genes for tRNA(Pyl) (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNA(Pyl) identity elements were determined by measuring the ability of 24 mutant tRNA(Pyl) species to be aminoacylated with the pyrrolysine analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1.C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNA(Pyl) predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNA(Pyl) structure contains the highly conserved T-loop contact U54.A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNA(Pyl) anticodon was shown not to be important for recognition by bacterial PylRS.  相似文献   

8.
9.
Desulfitobacterium hafniense strain PCP-1 reductively dechlorinates pentachlorophenol (PCP) to 3-chlorophenol and a variety of halogenated aromatic compounds at the ortho, meta, and para positions. Several reductive dehalogenases (RDases) are thought to be involved in this cascade of dehalogenation. We partially purified a novel RDase involved in the dechlorination of highly chlorinated phenols from strain PCP-1 cultivated in the presence of 2,4,6-trichlorophenol. The RDase was membrane associated, and the activity was sensitive to oxygen, with a half-life of 128 min upon exposure to air. The pH and temperature optima were 7.0 and 55°C, respectively. Several highly chlorinated phenols were dechlorinated at the ortho positions. The highest dechlorinating activity levels were observed with PCP, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol. 3-Chloro-4-hydroxyphenylacetate, 3-chloro-4-hydroxybenzoate, dichlorophenols, and monochlorophenols were not dechlorinated. The apparent Km value for PCP was 46.7 μM at a methyl viologen concentration of 2 mM. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activity, suggesting the involvement of a corrinoid cofactor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation revealed 2 bands with apparent molecular masses of 42 and 47 kDa. Mass spectrometry analysis using Mascot to search the genome sequence of D. hafniense strain DCB-2 identified the 42-kDa band as NADH-quinone oxidoreductase, subunit D, and the 47-kDa band as the putative chlorophenol RDase CprA3. This is the first report of an RDase with high affinity and high dechlorinating activity toward PCP.Halogenated compounds are generally known as toxic environmental pollutants. Hydrogenolytic reductive dehalogenation, a reaction involving the replacement of one halogen atom with one hydrogen atom, is the predominant mechanism for their transformation in anaerobic environments. This process can sustain microbial growth via electron transport-coupled phosphorylation (10, 26, 31). The majority of the known reductive dehalogenases (RDases) belong to the CprA/PceA family. These are single-polypeptide membrane-associated anaerobic enzymes that are synthesized as preproteins with a cleavable twin arginine translocation (TAT) peptide signal. They contain one corrinoid and two iron-sulfur clusters as cofactors.CprA enzymes catalyzing the reductive dechlorination of chloroaromatics have been purified from Desulfitobacterium hafniense strain DCB-2 (6), Desulfitobacterium dehalogenans (30), Desulfitobacterium chlororespirans strain Co23 (12, 14), Desulfitobacterium sp. strain PCE1 (29), and D. hafniense strain PCP-1 (28) and characterized, and PceA enzymes have been purified from Sulfurospirillum multivorans (22, 23), Desulfitobacterium sp. strain PCE-S (18, 19), D. hafniense strain TCE1 (29), Dehalococcoides ethenogenes 195 (15, 16), Desulfitobacterium sp. strain PCE1 (29), Dehalobacter restrictus (17, 25), Desulfitobacterium sp. strain Y51 (27), and Dehalococcoides sp. strain VS (20) and characterized. However, none of these enzymes showed high dechlorinating activity toward highly chlorinated phenols such as pentachlorophenol (PCP).D. hafniense strain PCP-1 is the only known strict anaerobic bacterium which reductively dechlorinates PCP to 3-chlorophenol (3-CP) and a variety of halogenated aromatic compounds at the ortho, meta, and para positions (2, 7). It dechlorinates PCP at the ortho, ortho, para, and meta positions in the following order: PCP → 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP) → 3,4,5-trichlorophenol (3,4,5-TCP) → 3,5-dichlorophenol (3,5-DCP) → 3-CP (7). Several RDases are thought to operate during this sequence of dechlorinations. Two RDases have already been purified from strain PCP-1. The first one, CrdA, is a membrane-associated enzyme, not related to CprA/PceA-type RDases, that mediates ortho dechlorination of 2,4,6-TCP and several chlorophenols (3). The second enzyme, CprA5, catalyzes the meta and para dechlorination of 3,5-DCP and several chlorophenols (28). Three other putative cprA genes were identified in strain PCP-1 (cprA2, cprA3, and cprA4), which suggests that other RDases with different specificities toward halogenated compounds exist in this strain (8, 31, 32). In this study, we have partially purified and characterized a new CprA-type RDase (CprA3) from strain PCP-1. CprA3 is the first reported RDase with high affinity toward PCP and with high ortho-dechlorinating activity toward PCP and other highly chlorinated phenols.  相似文献   

10.
11.
沙门氏菌Salmonella enterica serovar Cerro 87是一株从鸡场分离到的菌株, 其DNA骨架上的磷硫酰化导致了在高压脉冲电泳过程中DNA降解(DNA degradation, Dnd表型)。本研究采用SacB所介导的负筛选系统, 在该菌株中成功缺失了dnd基因簇, 构建了突变株XTG103, 该突变株不再具有Dnd表型。通过异丙基-b-D硫代半乳糖苷(IPTG)诱导启动子PlacZ的转录可以调控DNA磷硫酰化修饰的dnd基因簇的异源表达。  相似文献   

12.
Desulfitobacterium frappieri PCP-1 has the capacity to dehalogenate several halogenated aromatic compounds by reductive dehalogenation, however, the genes encoding the enzymes involved in such processes have not yet been identified. Using a degenerate oligonucleotide corresponding to a conserved sequence of CprA/PceA reductive dehalogenases, a cprA-like gene fragment was amplified by PCR from this bacterial strain. A Desulfitobacterium frappieri PCP-1 cosmid library was screened with the PCR product, allowing the cloning and sequencing of a 1.9-kb fragment. This fragment contains a nucleic acid sequence identical to one genomic contig of Desulfitobacterium hafniense, a bacterium closely related to Desulfitobacterium frappieri that is also involved in reductive dehalogenation. Other genes related to the Desulfitobacterium dehalogenans cpr locus were identified in this contig. Interestingly, the gene arrangement shows the presence of two copies of cprA-, cprB-, cprC-, cprD-, cprK-, and cprT-related genes, suggesting that gene duplication occurred within this chromosomic region. The screening of Delfitobacterium hafniense genomic contigs with a CprA-deduced amino acid sequence revealed two other cprA-like genes. Microbial genomes available in gene databases were also analyzed for sequences related to CprA/PceA. Two open reading frames encoding other putative reductive dehalogenases in Desulfitobacterium hafniense contigs were detected, along with 17 in the Dehalococcoides ethenogenes genome, a bacterium involved in the reductive dehalogenation of tetrachloroethene to ethene. The fact that several gene encoding putative reductive dehalogenases exist in Delfitobacterium hafniense, probably in other members of the genus Desulfitobacterium, and in Dehalococcoides ethenogenes suggests that these bacteria use distinct but related enzymes to achieve the dehalogenation of several chlorinated compounds [corrected].  相似文献   

13.
Genetic deletions that terminate within the cluster of genes needed for biotin biosynthesis in Escherichia coli have been isolated and mapped by transduction with phages lambda and P1. These deletions order the point mutations in each of the five genes. Mutations causing biotin dependence were incorporated into lambdapbio transducing phages. New bio(-) mutations were induced by exposure of lambdapbio particles to ultraviolet light. Tests of complementation between such bio(-)pbio particles and bio(-) mutant cells divide the bio(-) mutations into five cistrons: bioA, bioB, bioF, bioC, and bioD. Certain bioA and bioF mutations exhibit intragenic complementation, suggesting that these genes determine enzymes composed of identical subunits.  相似文献   

14.

A strict anaerobic bacterium, Desulfitobacterium sp. strain Y51, is capable of very efficiently dechlorinating tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) at concentrations as high as 960 μM and as low as 0.06 μM. Dechlorination was highly susceptible to air oxidation and to potential alternative electron acceptors, such as nitrite, nitrate or sulfite. The PCE reductive dehalogenase (encoded by the pceA gene and abbreviated as PceA dehalogenase) of strain Y51 was purified and characterized. The purified enzyme catalyzed the reductive dechlorination of PCE to cis-DCE at a specific activity of 113.6 nmol min−1  mg protein−1 . The apparent K m values for PCE and TCE were 105.7 and 535.3 μM, respectively. In addition to PCE and TCE, the enzyme exhibited dechlorination activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane. An 8.4-kb DNA fragment cloned from the Y51 genome revealed eight open reading frames, including the pceAB genes. Immunoblot analysis revealed that PceA dehalogenase is localized in the periplasm of Y51 cells. Production of PceA dehalogenase was induced upon addition of TCE. Significant growth inhibition of strain Y51 was observed in the presence of cis-DCE, More interestingly, the pce gene cluster was deleted with high frequency when the cells were grown with cis-DCE.

  相似文献   

15.
A strict anaerobic bacterium, Desulfitobacterium sp. strain Y51, is capable of very efficiently dechlorinating tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) at concentrations as high as 960 microM and as low as 0.06 microM. Dechlorination was highly susceptible to air oxidation and to potential alternative electron acceptors, such as nitrite, nitrate or sulfite. The PCE reductive dehalogenase (encoded by the pceA gene and abbreviated as PceA dehalogenase) of strain Y51 was purified and characterized. The purified enzyme catalyzed the reductive dechlorination of PCE to cis-DCE at a specific activity of 113.6 nmol min(-1) mg protein(-1). The apparent K(m) values for PCE and TCE were 105.7 and 535.3 microM, respectively. In addition to PCE and TCE, the enzyme exhibited dechlorination activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane. An 8.4-kb DNA fragment cloned from the Y51 genome revealed eight open reading frames, including the pceAB genes. Immunoblot analysis revealed that PceA dehalogenase is localized in the periplasm of Y51 cells. Production of PceA dehalogenase was induced upon addition of TCE. Significant growth inhibition of strain Y51 was observed in the presence of cis-DCE, More interestingly, the pce gene cluster was deleted with high frequency when the cells were grown with cis-DCE.  相似文献   

16.
A strict anaerobic bacterium, strain Y51, was isolated from soil contaminated with tetrachloroethene (PCE). Strain Y51 is capable of very efficiently dehalogenating PCE via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE) at concentrations as high as 960 microM and as low as 0.6 microM. Strain Y51 was gram-negative, motile with some lateral flagella, and curved rod-shaped. On the basis of the 16S rDNA sequence, the organism was identified to be a species within the genus Desulfitobacterium. Strain Y51 also had dehalogenation activities toward polychloroethanes such as hexa-, penta-, and tetrachloroethanes, from which dichloroethenes were produced as the final products. The cell extracts mediated the dehalogenation of PCE with reduced methyl viologen as an electron carrier at the specific rate of 5.0 nmol min(-1) mg cell protein(-1) (pH 7.2, 37 degrees C). Dehalogenation was highly susceptible to air oxidation, and to potential alternative electron acceptors such as nitrite or sulfite.  相似文献   

17.
18.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 muM day(-1), a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

19.
Dystrophin基因51号外显子缺失连接片段的克隆和测序   总被引:2,自引:0,他引:2  
为了解Dystrophin基因缺失断裂点和连接片段的序列特点,以分析Dystrophin基因缺失的分子机制,利用巢式反向PCR克隆了1名51号外显子缺失DMD(Duchennne Muscular Dystrophy,DMD)患者的缺失连接片段,通过测序,确定5‘和3‘断裂点及连接片段的序列。对5‘、3‘断裂点和连接片段进行重复序列、TOPOI、TOPOⅡ酶切位点等分析。结果共测得50号内含子1614bp,确定该患者Dystrophin基因的5‘断裂点位于THE1(Transposon-like Human Element,THE)内,3‘断裂点位于L2序列内。连接片段有3bp的连接同源序列cta,局部无小的缺失、插入和碱基置换。本研究首次在50号内含子内发现-THE1序列,再次发现Dystrophin基因的缺失断裂点位于THE1结构内。反向PCR操作简单、耗时短,可以推扩应用于缺失连接片段的克隆;THE1可能与部分Dystrophin基因的缺失有关;Dystrophin基因缺失大多与同源重组无关,非同源末端连接可能参与了Dystrophin基因缺失的形成。  相似文献   

20.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 μM day−1, a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号