首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the genetics of resistance of the Portuguese wheat breeding line TE 9111 to septoria tritici blotch (STB), which is caused by Mycosphaerella graminicola. TE 9111 is the most resistant line known in Europe and combines isolate-non-specific, partial resistance with several isolate-specific resistances. We show that, in addition to high levels of partial resistance to STB, TE 9111 has a new gene for resistance to M. graminicola isolate IPO90012, named Stb11, that maps on chromosome 1BS, the Stb6 gene for resistance to isolate IPO323 and, probably, the Stb7 gene for resistance to isolate IPO87019. All of these genes are closely linked to microsatellite markers, which can be used for marker-assisted selection. TE 9111 may therefore be a valuable source of resistance to STB for wheat breeding, especially in Mediterranean environments.  相似文献   

2.
Septoria tritici blotch, caused by the fungus Mycosphaerella graminicola,is currently the major foliar disease of wheat world-wide, and new sources of resistance and knowledge about the genetics of resistance are needed to improve breeding for resistance to this disease. Sears’s ’Synthetic 6x’ hexaploid wheat, derived from a hybrid of Triticum dicoccoides and Triticum tauschii, was resistant to 12 of 13 isolates of M. graminicola tested. Chromosome 7D of ’Synthetic 6x’ was identified as carrying resistance to all 12 isolates in tests of seedlings of inter-varietal chromosome substitution lines of ’Synthetic 6x’ into ’Chinese Spring’ and to two isolates in tests of adult plants. A septoria tritici blotch resistance gene, named Stb5, was identified using the M. graminicola isolate IPO94269 and mapped on the short arm of chromosome 7D, near the centromere, in a population of single homozygous chromosome-recombinant lines for the 7D chromosome. Received: 1 February 2001 / Accepted: 17 April 2001  相似文献   

3.
Septoria tritici blotch, caused by Mycosphaerella graminicola (anamorph Septoria tritici), is one of the most important foliar diseases of wheat in much of the world. Susceptibility of host plants to septoria was investigated by cytogenetic analysis. A line of Hobbit sib (Dwarf A) in which translocated chromosome 5BS–7BS was nominally substituted by chromosome arms 5BS and 7BS from Bezostaya 1 had a much lower mean level of septoria than Hobbit sib itself. By the use of microsatellite markers, it was shown that the 5BS arm of this line had in fact been substituted by the homologous arm of Chinese Spring. Further investigation of substitution and nullitetrasomic lines demonstrated that chromosome arm 5BS of Hobbit sib possesses genes, which either promote susceptibility to septoria or suppress resistance. This chromosome arm has previously been shown to carry genes for resistance to yellow (stripe) rust and powdery mildew, implying a trade-off between resistances to these two diseases and to septoria in wheat breeding. Bezostaya 1 was found to have specific resistance to M. graminicola isolate IPO323, probably controlled by the gene Stb6 on chromosome arm 3AS, present in numerous wheat cultivars. It also had partial resistance to septoria distributed over several chromosomes, which may explain the value of this cultivar as a source of septoria resistance.  相似文献   

4.
The virulence spectrum of 23 monopycnidiospore isolates of Mycosphaerella graminicola was determined using wheat genotypes that carried different resistance genes (Stb1Stb8 and Stb15). Disease severity was measured as the percentage of necrotic leaf area. The isolates used in the experiments were of diverse origin: eight from Poland, seven from Germany, and eight from other countries around the world. Analysis of variance revealed significant differences in the virulence of the isolates. Using multiple regression and Cook’s D statistic, 26 significant cultivar × isolate interactions were detected. The Israeli isolate IPO86036 showed the widest spectrum of specific reactions. It expressed specific virulence on at least four cultivars and specific avirulence on at least three. The other isolates showed specific interactions with 1–6 different cultivars. Despite the limited number of isolates that were tested, we recommend that a number of resistant lines, namely cultivars Veranopolis (Stb2), Cs/Synthetic 7D (Stb5), Arina (Stb15, Stb6 and partial resistance), and Liwilla (unknown resistance factors), could be incorporated into central European wheat breeding programmes that are aimed at developing resistance against septoria tritici blotch. In contrast, resistance gene Stb7, which is carried by cultivar Estanzuela Federal, was ineffective against most of the isolates that were used. These results on the virulence spectrum of M. graminicola isolates provide valuable information for effective wheat breeding programmes to develop resistance to the pathogen.  相似文献   

5.
6.
The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs.  相似文献   

7.
Septoria tritici blotch (STB) caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is one of the most important foliar diseases of wheat. We assessed three doubled-haploid (DH) populations derived from Chara (STB-susceptible)/WW2449 (STB-resistant), Whistler (STB-susceptible)/WW1842 (STB-resistant) and Krichauff (STB susceptible)/WW2451 (STB-resistant) for resistance to a single-pycnidium isolate 79.2.1A of M. graminicola at the seedling stage. STB resistance in each of the three DH populations was conditioned by a single major gene designated as StbWW2449, StbWW1842 and StbWW2451. Linkage analyses and physical mapping indicated that the StbWW loci were located on the short arm of chromosome 1B (IBS). Four simple sequence repeat (SSR) markers linked with STB resistance: Xwmc230, Xbarc119b, Xksum045 and Xbarc008 were located to the distal bin of 1BS.sat1BS-4 (FL: 0.52–1.00) in the 1BS physical map. Xwmc230, Xbarc119b and Xksum045 markers, mapped within 7 cM from StbWW were validated for their linkage and predicted the STB resistance with over 94% accuracy in the 79 advanced breeding lines having WW2449 as one of the parents. The marker interval Xwmc230/Xksum045-Xbarc119b also explained up to 38% of the phenotypic variance at the adult plant stage in all three DH mapping populations. These results have proven that SSR markers are useful in monitoring STB resistance both at seedling and adult plant stages and hence are suitable for routine marker-assisted selection in the wheat breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

9.
Resistance to the disease septoria tritici blotch of wheat (Triticum aestivum L.), caused by the fungus Mycosphaerella graminicola (Fuckel.) J. Schrot in Cohn (anamorph Septoria tritici Roberge in Desmaz.) was investigated in a doubled-haploid (DH) population of a cross between the susceptible winter wheat cultivar Savannah and the resistant cultivar Senat. A molecular linkage map of the population was constructed including 76 SSR loci and 244 AFLP loci. Parents and DH progeny were tested for resistance to single isolates of M. graminicola in a growth chamber at the seedling stage, and to an isolate mixture at the adult plant stage, in field trials. A gene located at or near the Stb6 locus mapping to chromosome 3A provided seedling resistance to IPO323. Two complementary genes, mapping to chromosome 3A, one of which was the IPO323 resistance gene, were needed for resistance to the Danish isolate Ris?97-86. In addition, a number of minor loci influenced the expression of resistance in the growth chamber. In the field, four QTLs for resistance to septoria tritici blotch were detected. Two QTLs, located on chromosomes 3A and 6B explained 18.2 and 67.9% of the phenotypic variance in the mean over two trials. Both these QTLs were also detected at the seedling stage with isolate Ris?97-86, whereas isolate IPO323 only detected the QTL on 3A. Additionally, two QTLs identified in adult plants on chromosomes 2B and 7B were not detected at the seedling stage. Four QTLs were detected for plant height located on chromosomes 2B, 3A, 3B and on a linkage group not assigned to a chromosome. The major QTLs on 3A and on the unassigned linkage group were consistent over two trials, and the QTL on 3A seemed to be linked to a QTL for septoria tritici blotch resistance.  相似文献   

10.
Breeding for resistance to Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is an essential component in controlling this important foliar disease of wheat. Inheritance of seedling resistance to seven worldwide pathogen isolates has been studied in a doubled-haploid (DH) population derived from a cross between the field resistant cultivar Solitär and the susceptible cultivar Mazurka. Multiple quantitative trait locus (QTL) mapping revealed major and minor genetic effects on resistance as well as several epistatic relationships in the seedling stage. Solitär conferred resistance to isolate IPO323, governed by Stb6 on chromosome 3A, as well as to IPO99015, IPO92034, Hu1 and Hu2 controlled by a QTL on chromosome arm 1BS, possibly corresponding to Stb11 and minor QTL on chromosomes 1B, 3D, 6B and 7D. Resistance of Mazurka to IPO90015 and BBA22 was caused by a QTL located in a region on 4AL which harbours Stb7 or Stb12. QTL specific to pycnidial coverage on 3B and specific to necrosis on 1A could be discovered for isolate IPO92034. Pairwise epistatic interactions were reliably detected with five isolates. Although their contributions to the total variance are generally low, the genotypic effect of the QTL by QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) made up almost 15% of disease expression. Altogether, the results suggest a complex inheritance of resistance to STB in the seedling stage in terms of isolate-specificity and resistance mechanisms, which have implications for marker-assisted breeding in an attempt to pyramid STB resistance genes.  相似文献   

11.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs.  相似文献   

12.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

13.
This Mycosphaerella graminicola pathogen profile covers recent advances in the knowledge of this ascomycete fungus and of the disease it causes, septoria tritici blotch of wheat. Research on this pathogen has accelerated since publication of a previous pathogen profile in this journal in 2002. Septoria tritici blotch continues to have high economic importance and widespread global impact on wheat production. Taxonomy: Mycosphaerella graminicola (Fuckel) J. Schröt. In Cohn (anamorph: Septoria tritici Roberge in Desmaz.). Kingdom Fungi, Phylum Ascomycota, Class Loculoascomycetes (filamentous ascomycetes), Order Dothideales, Genus Mycosphaerella, Species graminicola. Host range: Bread and durum wheat (Triticum aestivum L. and T. turgidum ssp. durum L.). Disease symptoms: Initially leaves develop a chlorotic flecking, which is followed by the development of necrotic lesions which contain brown–black pycnidia. Necrosis causes a reduction in photosynthetic capacity and therefore affects grain yield. Disease control: The disease is primarily controlled by a combination of resistant cultivars and fungicides. Rapid advances in disease control, especially in resistance breeding, are opening up new opportunities for the management of the disease. Useful websites: http://genome.jgi‐psf.org/Mycgr3/Mycgr3.home.html .  相似文献   

14.
Stagonospora nodorum is the causal agent of the Stagonospora glume blotch disease in hexaploid wheat. The Swiss winter bread wheat cv. 'Arina' has a highly effective, durable and quantitative glume blotch resistance. We studied 240 single seed descent (SSD)-derived lines of an 'Arina × Forno' F5:7 population to identify and map quantitative trait loci (QTLs) for glume blotch resistance under natural infestation. Using composite interval mapping (CIM) and LOD>4.5, we detected two chromosomal regions on chromosome arms 3BS and 4BL which were specifically associated with glume blotch resistance. These identified QTLs were designated QSng.sfr-3BS and QSng.sfr-4BL, respectively. QSng.sfr-3BS peaked at the locus Xgwm389 in the telomeric region of the short arm of chromosome 3B and explained 31.2% of the observed phenotypic variance for the resistance within the population. The responsible QSng.sfr-3BS allele originated from the resistant parent 'Arina'. The QTL QSng.sfr-4BL (19.1%) mapped to chromosome arm 4BL ('Forno' allele) very close to two known genes, TaMlo and a catalase (Cat). Both QTL alleles combined could enhance the resistance level by about 50%. Additionally, they showed significant epistatic effects (4.4%). We found PCR-based microsatellite markers closely linked to QSng.sfr-3BS (gwm389) and QSng.sfr-4BL (gwm251) which make marker-assisted selection (MAS) for Stagonospora glume blotch resistance feasible. We also found one resistance QTL, QSng.sfr-5BL, on the long arm of chromosome 5B which overlapped with QTLs for plant height as well as heading time.Communicated by H. C. Becker  相似文献   

15.
A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC), were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) × UR206. Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance gene, 143 F2 individuals derived from a cross UR206 × UR203 were used to construct a linkage map. The resistant gene was mapped on the chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the gene, it was temporarily designated PmU.  相似文献   

16.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

17.
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24/Sr24 locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18/Lr34 region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.  相似文献   

18.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

19.
Pseudomonas aeruginosa LEC1, a soil isolate from Israel, suppressed septoria tritici blotch of wheat caused bySeptoria tritici. Tn5-751 insertion mutagenesis of strain LEC1 produced one pyoverdine-negative (pvd) and three different pyocyanine-deficient (pcy) mutants. The nonfluorescentpvd mutant, like the wild-type, inhibited growth ofS. tritici on different solid media and suppressed the formation of pycnidia on wheat leaves. In contrast, thepcy mutants had lost part of the inhibitory activity in vitro and also part of the suppressive ability in vivo. It is suggested that antibiosis plays an important role in the suppression of septoria tritici blotch of wheat.  相似文献   

20.
Aluminum (Al) toxicity is one of the major constrains for wheat production in many wheat growing areas worldwide. Further understanding of inheritance of Al resistance may facilitate improvement of Al resistance of wheat cultivars (Triticum aestivum L.). A set of ditelosomic lines derived from the moderately Al-resistant wheat cultivar Chinese Spring was assessed for Al resistance. The root growth of ditelosomic lines DT5AL, DT7AL, DT2DS and DT4DS was significantly lower than that of euploid Chinese Spring under Al stress, suggesting that Al-resistance genes might exist on the missing chromosome arms of 5AS, 7AS, 2DL and 4DL of Chinese Spring. A population of recombinant inbred lines (RILs) from the cross Annong 8455 × Chinese Spring-Sumai 3 7A substitution line was used to determine the effects of these chromosome arms on Al resistance. A genetic linkage map consisting of 381 amplified fragment length polymorphism (AFLP) markers and 168 simple sequence repeat (SSR) markers was constructed to determine the genetic effect of the quantitative trait loci (QTLs) for Al resistance in Chinese Spring. Three QTLs, Qalt.pser-4D, Qalt.pser-5A and Qalt.pser-2D, were identified that enhanced root growth under Al stress, suggesting that inheritance of Al resistance in Chinese Spring is polygenic. The QTL with the largest effect was flanked by the markers of Xcfd23 and Xwmc331 on chromosome 4DL and most probably is multi-allelic to the major QTL identified in Atlas 66. Two additional QTLs, Qalt.pser-5A and Qalt.pser-2D on chromosome 5AS and 2DL, respectively, were also detected with marginal significance in the population. Some SSR markers identified in this study would be useful for marker-assisted pyramiding of different QTLs for Al resistance in wheat cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号