首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The DNA region downstream of the nodABCSUIJ operon of Azorhizobium caulinodans was further characterized and two new genes, nodZ and noeC were identified in the same operon. The A. caulinodans wild-type strain produces a population of Nod factors that, at the reducing end, are either unmodified or carry a D -arabinosyl and/or an L -fucosyl branch. Nod factors produced by Tn 5 -insertion mutants in nodZ noeC , and the separate nolK locus, were analysed by thin-layer chromatography and mass spectrometry. Fucosylation of Nod factors depended on both nodZ and nolK . Arabinosylation depended on noeC and/or downstream genes. Protein extracts of A. caulinodans contained an enzymatic activity for fucose transfer from GDP-fucose to chitooligosaccharides and to Nod factors. By mutant analysis and expression of nodZ in Escherichia coli , the fucosyltransferase activity was ascribed to the protein encoded by nodZ . In addition, a Nod factor fucosyltransferase activity, independent of nodZ or other known nod genes, was detected in A. caulinodans . Finally, on the basis of sequence similarity of the nolK gene product, and mass spectrometric analysis of Nod factors produced by a nolK mutant, we propose that this gene is involved in the synthesis of GDP-fucose.  相似文献   

2.
Nod factors are lipo-chito-oligosaccharides secreted by Rhizobium to initiate deformation of root hairs and other changes in host plants. Since Nod factor-induced changes in intracellular calcium occur in responsive root hairs, we tested if phospholipase C (PLC) activity is stimulated by Nod factors. Plasma membranes were isolated from the nodulation-competent zone of roots of Vigna unguiculata to assay PLC activity in vitro. Nod factors isolated from Rhizobium sp. NGR234, NodNGR[S] and NodNGR[Ac] significantly increased PLC activity and this increase in activity was inhibited in the presence of the PLC inhibitors, neomycin and U-73122. The response appears specific as PLC activity was not significantly induced neither by the 4-sugar, N,N',N',N' -tetracetylchitotetraose (TACT), or the five-sugar, penta- N -acetylchitopentaose (PACT), backbone of Nod factors. The G-protein activators, GTP γ S and the aluminium fluoride complex, had no effect on PLC activity in the presence or absence of NodNGR[S], suggesting that Nod factors act independently of G-proteins in vitro. However, the combination of oleic acid and TACT mimicked the effect of Nod factors on PLC activity indicating that the presence of the lipid tail may be critical. Also this combination of compounds acted synergistically together to evoke root hair deformation in vivo. Our results indicate that Nod factors can modulate membrane delimited PLC activity and indicate that PLC is likely to be a component of the Nod factor-signalling pathway.  相似文献   

3.
Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGRΩnolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not.  相似文献   

4.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

5.
Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N -acetyl- d -glucosamine of LCOs is substituted at C6 with 2- O -methyl- l -fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234 a that contains a new nodulation gene, noeE which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum . Furthermore, mutation of noeE (NGRΔ noeE  ) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus . The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRΔ noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2- O -methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.  相似文献   

6.
Rhizobial Nod factors (NFs) function as nodulation signals that trigger symbiotic responses of leguminous host plants. NFs consist of a chitin oligomer backbone carrying a fatty acid at the non-reducing end. Depending on the rhizobial strain, NFs carry additional substituents, which may determine host specificity. Transgenic suspension-cultured soybean (Glycine max [L.] Merr.) cells expressing aequorin have been used to record cytosolic [Ca(2+)] changes upon treatment with purified NFs and chitin fragments. Both compounds elicited an increase of cytosolic [Ca(2+)] at nanomolar concentrations. The shape and amplitude of cytosolic [Ca(2+)] changes was similar to the response elicited by un-derivatized chitin oligomers. Cells challenged first with NFs did not respond to a subsequent treatment with chitin oligomers and vice versa. Dose-response experiments showed that un-derivatized chitin oligomers were more active compared with NFs. The capacity of NFs to elicit the calcium response depended on their structure. The presence of reducing end substituents in methylfucosylated NFs from Rhizobium sp. NGR234 and the O-acetyl group at the non-reducing end in NFs from Sinorhizobium meliloti attenuated the activity to cause the calcium changes. The sulfate group in NFs from Rhizobium tropici did not affect the elicitor activity. Pentameric S. meliloti NFs were more active than tetrameric molecules, whereas trimeric or dimeric degradation products were inactive. Substituents in NFs may have the function to avoid stimulation of defense reactions mediated by the perception system for chitin oligomers.  相似文献   

7.
8.
Strain SVQ121 is a mutant derivative of Sinorhizobium fredii HH103 carrying a transposon Tn5-lacZ insertion into the nolO-coding region. Sequence analysis of the wild-type gene revealed that it is homologous to that of Rhizobium sp. NGR234, which is involved in the 3 (or 4)-O-carbamoylation of the nonreducing terminus of Nod factors. Downstream of nolO, as in Rhizobium sp. NGR234, the noeI gene responsible for methylation of the fucose moiety of Nod factors was found. SVQ121 Nod factors showed lower levels of methylation into the fucosyl residue than those of HH103-suggesting a polar effect of the transposon insertion into nolO over the noel gene. A noeI HH103 mutant was constructed. This mutant, SVQ503, produced Nod factors devoid of methyl groups, confirming that the S. fredii noeI gene is functional. Neither the nolO nor the noeI mutation affected the ability of HH103 to nodulate several host plants, but both mutations reduced competitiveness to nodulate soybean. The Nod factors produced by strain HH103, like those of other S. fredii isolates, lack carbamoyl residues. By using specific polymerase chain reaction primers, we sequenced the nolO gene of S. fredii strains USDA192, USDA193, USDA257, and 042B(s). All the analyzed strains showed the same -1 frameshift mutation that is present in the HH103 nolO-coding region. From these results, it is concluded that, regardless of their geographical origin, S. fredii strains carry the nolO-coding region but that it is truncated by the same base-pair deletion.  相似文献   

9.
Rhizobium bacteria form nitrogen-fixing nodules on legume roots. As part of the nodulation process, they secrete Nod factors that are beta-1,4-linked oligomers of N-acetylglucosamine. These factors depend on nodulation (nod) genes, but most aspects of factor synthesis are not yet known. We show here that one gene, nodC, shows striking similarity to genes encoding proteins known to be involved in polysaccharide synthesis in yeast and bacteria, specifically chitin and cellulose synthases, as well as a protein with unknown function in Xenopus embryos, DG42. This similarity is consistent with a role for the NodC protein in the formation of the beta-1,4-linkage in Nod factors.  相似文献   

10.
In response to phenolic compounds exuded by the host plant, symbiotic Rhizobium bacteria produce signal molecules (Nod factors), consisting of lipochitooligosaccharides with strain-specific substitutions. In Azorhizobium caulinodans strain ORS571 these modifications are an O -arabinosyl group, an O -carbamoyl group, and an N -methyl group. Several lines of evidence indicate that the nodS gene located in the nodABCSUIJ operon is implicated in the methylation of Nod factors. Previously we have shown that NodS is an S -adenosyl- l -methionine (SAM)-binding protein, essential for the l -[3H-methyl]-methionine labelling of ORS571 Nod factors in vivo . Here, we present an in vitro assay showing that NodS from either A. caulinodans or Rhizobium species NGR234 methylates end-deacetylated chitooligosaccharides, using [3H-methyl]-SAM as a methyl donor. The enzymatic and SAM-binding activity were correlated with the nodS gene and localized within the soluble protein fraction. The A. caulinodans nodS gene was expressed in Escherichia coli and a glutathione- S -transferase—NodS fusion protein purified. This protein bound SAM and could methylate end-deacetylated chitooligosaccharides, but could not fully methylate acetylated chitooligosaccharides or unmethylated lipo-chitooligosaccharides. These data implicate that the methylation step in the biosynthesis pathway of ORS571 Nod factors occurs after deacetylation and prior to acylation of the chitooligosaccharides.  相似文献   

11.
The effects of lipo-chitin oligosaccharide Nod factors (NodNGR[S] from Rhizobium sp. NGR234) on root hair deformation in Vigna unguiculata (L.) Walp. were studied using pharmacological agents to mimic and/or inhibit their action. It was hypothesised that the rearrangement of the cytoskeleton seen during Nod factor induced root hair deformation is modulated by protein kinase C, monomeric G proteins of the Rho superfamily and the location and amount of phosphatidylinositol 3-phosphates (PI3Ps). This hypothesis is supported by the following observations. The protein kinase C activators, 12-deoxyphorbol 13-acetate (DPA) and diacylglycerol kinase inhibitor 1, stimulated root hair deformation to a level similar to that seen with Nod factors or mastoparan, whereas the inhibitor Gö 6976 inhibited root hair deformations induced by NodNGR[S], mastoparan, DPA and diacylglycerol kinase inhibitor 1. The Ras antagonists mevastatin and sulindac sulphide, and the Rho antagonist exoenzyme C3 toxin from Clostridium botulinum all inhibited Nod factor stimulated root hair deformation. Pasteurella multocida toxin activates Rho and stimulated root hair deformation, this stimulation was inhibited by both neomycin and exoenzyme C3 toxin. The PI3 kinase inhibitors, wortmannin and LY-294002 attenuated Nod factor induced root hair deformation. These studies were complemented with actin immunoprecipitations of root hair enriched microsomal membrane preparations from V. unguiculata which pulled down small GTP binding proteins. Root hair deformation is an important early stage in the formation of nitrogen fixing nodules and this study highlights that these processes may depend on signalling cascades involving phospholipids and small GTP binding proteins.  相似文献   

12.
We mutagenized Sinorhizobium fredii HH103-1 with Tn5-B20 and screened about 2,000 colonies for increased beta-galactosidase activity in the presence of the flavonoid naringenin. One mutant, designated SVQ287, produces lipochitooligosaccharide Nod factors (LCOs) that differ from those of the parental strain. The nonreducing N-acetylglucosamine residues of all of the LCOs of mutant SVQ287 lack fucose and 2-O-methylfucose substituents. In addition, SVQ287 synthesizes an LCO with an unusually long, C20:1 fatty acyl side chain. The transposon insertion of mutant SVQ287 lies within a 1.1-kb HindIII fragment. This and an adjacent 2.4-kb HindIII fragment were sequenced. The sequence contains the 3' end of noeK, nodZ, and noeL (the gene interrupted by Tn5-B20), and the 5' end of nolK, all in the same orientation. Although each of these genes has a similarly oriented counterpart on the symbiosis plasmid of the broad-host-range Rhizobium sp. strain NGR234, there are significant differences in the noeK/nodZ intergenic region. Based on amino acid sequence homology, noeL encodes GDP-D-mannose dehydratase, an enzyme involved in the synthesis of GDP-L-fucose, and nolK encodes a NAD-dependent nucleotide sugar epimerase/dehydrogenase. We show that expression of the noeL gene is under the control of NodD1 in S. fredii and is most probably mediated by the nod box that precedes nodZ. Transposon insertion into neoL has two impacts on symbiosis with Williams soybean: nodulation rate is reduced slightly and competitiveness for nodulation is decreased significantly. Mutant SVQ287 retains its ability to form nitrogen-fixing nodules on other legumes, but final nodule number is attenuated on Cajanus cajan.  相似文献   

13.
We report the nucleotide sequence of the rpoN gene from broad-host-range Rhizobium sp. strain NGR234 and analyze the encoded RPON protein, a sigma factor. Comparative analysis of the deduced amino acid sequence of RPON from NGR234 with sequences from other gram-negative bacteria identified a perfectly conserved RPON box unique to RPON sigma factors. Symbiotic regulatory phenotypes were defined for a site-directed internal deletion within the coding sequence of the rpoN gene of Rhizobium strain NGR234: they included quantitative nodulation kinetics on Vigna unguiculata and microscopic analysis of the Fix- determinate nodules of V. unguiculata and Macroptilium atropurpureum. RPON was a primary coregulator of nodulation and was implicated in establishment or maintenance of the plant-synthesized peribacteroid membrane. Phenotypes of rpoN in Rhizobium strain NGR234 could be grouped as symbiosis related, rather than simply pleiotropically physiological as in free-living bacteria such as Klebsiella pneumoniae and Pseudomonas putida.  相似文献   

14.
Nod factors are a group of biologically active oligosaccharidesignals that are secreted by symbiotically competent bacteriaof the family Rhizobiaceae. Their biosynthesis is determinedby rhizobial nodulation (nod) genes, and is specifically inducedin response to flavonoids secreted from the roots of host leguminousplants. The biological activity of Nod factors on these hostlegumes dramatically mimics the early developmental symptomsof the Rhizobium-legame symbiosis including, amongst other effects,root hair deformations and nodule initiation. Structurally,all Nod factors are short oligomers of ß-1,4-linkedN-acetylglucos-amine residues [usually degree of polymerization(dp) 4 or 5] that are N-acylated on the distal glucosarnine.This common ‘core’ structure may be modified bya number of species-specific substituents on the distal or reducingsugars. These modifications are governed by rhizobial host specificitynod genes. The biological activity of purified Nod factors mirrorsthis host specificity, indicating that the symbiotic host rangeof individual Rhizobium species is, at least partially, determinedby the variety of Nod factors they are able to produce. Herewe describe techniques that are universally applicable to theextraction, chromatographic separation and identification ofNod factors. We have applied these techniques to Nod factorsfrom the broad-host-range species Rhizobium fredii USDA257 andRhizobium spp. NGR234, and the more narrow-host-range Bradyrhizobiumjaponicum USDA110, and have identified a group of novel, relativelyhydrophilic Nod factors from the NGR234 species that may haveimplications for Nod factor biosynthesis. lipo-oligosaccharide Nod factor rhibozobia singals TLC  相似文献   

15.
16.
The nodZ gene, which is present in various rhizobial species, is involved in the addition of a fucose residue in an alpha 1-6 linkage to the reducing N-acetylglucosamine residue of lipo-chitin oligosaccharide signal molecules, the so-called Nod factors. Fucosylation of Nod factors is known to affect nodulation efficiency and host specificity. Despite a lack of overall sequence identity, NodZ proteins share conserved peptide motifs with mammalian and plant fucosyltransferases that participate in the biosynthesis of complex glycans and polysaccharides. These peptide motifs are thought to play important roles in catalysis. NodZ was expressed as an active and soluble form in Escherichia coli and was subjected to site-directed mutagenesis to investigate the role of the most conserved residues. Enzyme assays demonstrate that the replacement of the invariant Arg-182 by either alanine, lysine, or aspartate results in products with no detectable activity. A similar result is obtained with the replacement of the conserved acidic position (Asp-275) into its corresponding amide form. The residues His-183 and Asn-185 appear to fulfill functions that are more specific to the NodZ subfamily. Secondary structure predictions and threading analyses suggest the presence of a "Rossmann-type" nucleotide binding domain in the half C-terminal part of the catalytic domain of fucosyltransferases. Site-directed mutagenesis combined with theoretical approaches have shed light on the possible nucleotide donor recognition mode for NodZ and related fucosyltransferases.  相似文献   

17.
To investigate the role of dicarboxylate transport in nitrogen-fixing symbioses between Rhizobium and tropical legumes, we made a molecular genetic analysis of the bacterial transport system in Rhizobium sp. NGR234. This braod host range strain fixes nitrogen in association with evolutionarily divergent legumes. Two dicarboxylate transport systems were cloned from Rhizobium NGR234. One locus was chromosomally located, whereas the other was carried on the symbiotic plasmid (pSym) and contained a dctA carrier protein gene, which was analyzed in detail. Although the DNA and derived amino acid sequences of the structural gene were substantially homologous to that of R. meliloti, its promoter sequences was quite distinct, and the upstream sequence also exhibited no homology to dctB, which is found at this position in R. meliloti. A site-directed internal deletion mutant in dctA of NGR234 exhibited a (unique) exclusively symbiotic phenotype that could grow on dicarboxylates ex planta, but could not fix nitrogen in planta. This phenotype was found for tested host plants of NGR234 with either determinate- or indeterminate-type nodules, confirming for the first time that symbiosis-specific uptake of dicarboxylates is a prerequisite for nitrogen fixation in tropical legume symbioses.  相似文献   

18.
19.
The induction of plant defense-related responses by chitin oligomers and the Rhizobium meliloti lipo-chito-oligosaccharide nodulation signals (Nod factors) in Medicago cell cultures and roots was investigated by following the expression of genes encoding enzymes of the isoflavonoid biosynthetic pathway, such as chalcone synthase, chalcone reductase, isoflavone reductase, as well as genes encoding a pathogenesis-related protein and a peroxidase. In suspension-cultured cells, all genes except the peroxidase gene were induced by both the R. meliloti Nod factor NodRm-IV(C16:2,S) and chitin oligomers with a minimum of three sugar residues. However, activation of these genes was not elicited by the symbiotically inactive, desulfated NodRm-IV(C16:2). Moreover, the cells were more sensitive to the chitin oligosaccharides than to the Nod factor. Analysis of flavonoids in Medicago microcallus cultures revealed differences between cells treated with N -acetyl-chitotetraose and those treated with Nod factor and demonstrated increased production of the phytoalexin medicarpin in the presence of Nod factor. In Medicago roots, none of the tested genes was activated by the N -acetylchitotetraose, whereas the Nod factor at micro-molar concentration enhanced transient expression of the isoflavonoid biosynthetic genes. The differential responses to Nod factors and chitin oligomers suggest that Medicago cells possess distinct perception systems for these related molecules.  相似文献   

20.
When the rhizosphere is starved of nitrogen, the soil bacteria Rhizobium are able to infect legume roots and invade root nodules, where they can fix atmospheric nitrogen. Nod boxes, the nod gene promoters located on the rhizobial symbiotic plasmid, are activated by means of flavonoids present in the legume root exudates, leading to the synthesis of lipochitooligomers: the Nod factors. Several recent works pointed out the importance of rhizobial surface polysaccharides in establishing the highly specific symbiosis between rhizobia and legumes. Lipopolysaccharides (LPSs) exhibit specific active roles in the later stages of the nodulation processes, such as the penetration of the infection thread into the cortical cells or the setting up of the nitrogen-fixing phenotype. The study reported here concerns the structural modifications affecting surface (lipo)polysaccharides when Sinorhizobium sp. NGR234 strains are grown with nod gene induction under nitrogen starvation. In the absence of induction, NGR234 only produces fast-migrating LPSs. When cultured in the presence of flavonoids, the same strain produces large quantities of a high-molecular-weight rhamnose-rich lipopolysaccharide (RLPS). Because the synthesis of this compound seems to be coded by the symbiotic plasmid under direct or indirect gene induction by flavonoids, this RLPS is thought to be biologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号