首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleurotus sajor-caju, strain Pl-27, produces manganese-dependent peroxidase (MnP) and laccase, but not lignin peroxidase, when grown on a defined medium with glucose as sole carbon source. MnP activity was detected in fungal cultures supplemented with both high (26 mM-N) and low (2.6 mM-N) nutrient nitrogen although higher specific activity values were recorded under the latter conditions. Conversely, laccase production was not influenced by nutrient nitrogen levels under the growth conditions adopted. Both the titre and time of appearence of MnP were also affected by the concentration of Mn in the culture medium with highest enzyme levels recorded in cultures supplemented with 15 ppm Mn. Two MnP and five laccase isoforms were identified by FPLC and gel electrophoresis.  相似文献   

2.
The ability of the white rot fungus Ceriporiopsis subvermispora to mineralize 14C-synthetic lignin was studied under different culture conditions, and the levels of two extracellular enzymes were monitored. The highest mineralization rates (28% after 28 days) were obtained in cultures containing a growth-limiting amount of nitrogen source (1.0 mM ammonium tartrate); under this condition, the levels of manganese peroxidase (MnP) and laccase present in the culture supernatant solutions were very low compared with cultures containing 10 mM of the nitrogen source. In contrast, cultures containing a limiting concentration of the carbon source (0.1% glucose) showed low levels of both enzymes and also very low mineralization rates compared with cultures containing 1% glucose. Cultures containing 11 ppm of Mn(II) showed a higher rate of mineralization than those containing 0.3 or 40 ppm of this cation. Levels of MnP and laccase were higher when 40 ppm of Mn(II) was used. Mineralization rates were slightly higher in cultures flushed daily with oxygen, whereas laccase levels were lower and MnP levels were approximately the same as in cultures maintained under an air atmosphere. The presence of 0.4 mM veratryl alcohol reduced both mineralization rates and MnP levels, without affecting laccase levels. Lignin peroxidase activity was not detected under any condition. Addition of purified lignin peroxidase to the cultures in the presence or absence of veratryl alcohol did not enhance mineralization rates significantly.  相似文献   

3.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

4.
5.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

6.
李思  程伟  张富美  尚晓静  侯瑞 《菌物学报》2021,40(6):1511-1524
利用组织分离从未成熟有机蓝莓的表皮中分离出菌株G14,根据其菌落形态、ITS序列对比及系统发育树的分析,鉴定菌株G14为一株烟管孔菌Bjerkandera adusta.菌株G14可以分泌漆酶(laccase,Lac)、木质素过氧化物酶(lignin peroxidase,LiP)和锰过氧化物酶(manganese p...  相似文献   

7.
The extracellular ligninolytic enzyme system of Pleurotus laciniatocrenatus, grown under different culture conditions, was characterized and the ability of this strain to degrade different components of Eucalyptus globulus wood was determined. In shaken liquid cultures grown on a C-limited medium supplemented with yeast extract (0.1%) and peptone (0.5%), the fungus produced extracellular aryl-alcohol oxidase (Aao), laccase (Lac), manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MiP) activities, their maximum levels being, respectively, about 600, 50, 1360, and 920 pkat/mL. The supplementation of 1 mmol/L vanillic acid and 150 micromol/L CuSO4 produced an increase of Lac activity levels up to 4-fold and 68.3-fold, respectively. No significant differences were found in the levels of the other ligninolytic enzyme activities when compared to the basal medium. Solid-state fermentation cultures on E. globulus wood chips revealed Lac and MiP activities. These cultures showed degradative activity on lignin and lipophilic wood extractives.  相似文献   

8.
9.
It has been shown that the wood-rotting mushroom Pleurotus dryinus IBB 903 is able to effectively produce cellulases, xylanase, laccase, and manganese peroxidase in submerged fermentation of mandarin peels and tree leaves. Gradual increasing of lignocellulosic substrates concentration from 1 to 4–6% enhanced enzyme accumulation in culture liquid. A simple and inexpensive medium containing mandarin peels and yeast extract as sole carbon and nitrogen sources allowed simultaneous production of high levels of both hydrolases and oxidases by P. dryinus IBB 903. Supplementation of this medium by copper and manganese caused earlier and faster accumulation of laccase and manganese peroxidase increasing their yield by 1.5 and 7.5 times, respectively. In addition, by adding manganese to the medium it is possible to regulate the ratio of laccase and MnP in enzyme preparation. The presence of lignocellulosic substrate is the requisite for MnP production by P. dryinus IBB 903 since there was no production of MnP when mushroom has been cultivated in the synthetic medium with different carbon source. Among carbon source tested only utilization of glucose resulted to 21-fold increase of fungus laccase specific activity compared to control medium without carbon source. Carboxymethyl cellulase and xylanase appeared to be inducible enzymes.  相似文献   

10.
Pleurotus sp. was grown in liquid medium and on a solid straw substrate, and activities of laccase and manganese-dependent peroxidase (MnP) were recorded. The activities were the highest in a rich, glucose corn-steep liquid medium. In straw cultures, laccase activity was about ten times lower. Under solid state conditions, MnP production was the highest during days 20–40, when laccase activity already had declined. In straw cultures, mineralization of14C-pyrene was measured as release of14CO2. The highest rates of pyrene mineralization occurred during days 20–45,i.e. the period of high MnP activities, suggesting a role of this enzyme in PAH degradation. Within 60d, 24% of pyrene was mineralized.  相似文献   

11.
In the present study, the production of laccase (Lac) and manganese‐dependent peroxidase (MnP) by the white‐rot fungus Trametes versicolor grown in submerged cultures with different agricultural residues was investigated. The lignocellulosic materials studied were almond shells, hazelnut husks, sunflower stems, clover straw and hazelnut cobs, because they are common agricultural wastes in Turkey. Among the different lignocellulosic materials studied, hazelnut cobs provided the highest Lac and MnP activities (47.09 and 109.21 U/L, respectively). The optimum conditions were determined for Lac and MnP production in submerged cultures of T. versicolor by using hazelnut cobs as substrate. For Lac production, the optimum incubation time, hazelnut cob concentration, pH, and shaking rate were found as 4 days, 2% w/v, 6.0 and 130 rpm, respectively. For MnP production, the optimum incubation time, hazelnut cob concentration, pH and shaking rate were found as 5 days, 2% w/v, 6.0 and 90 rpm, respectively.  相似文献   

12.
AIMS: The possibility of laccase production by Phanerochaete chrysosporium was studied. METHODS AND RESULTS: A relatively high initial Mn(II) concentration (1-4 mM) in the growth medium leads to the development of reddish-brown coloration and intensive oxidation of 2.2'-azino-bis(3-etilbenz-tiazolin-6-sulfonate) (ABTS). The peak of ABTS oxidation was obtained approximately 1 day after the peak of MnP activity. CONCLUSION: ABTS oxidation was not caused by manganese peroxidase (MnP) nor by laccase but was the consequence of the action of Mn(III) which was stabilised in the growth medium. Decomposition of the complex took place after the biomass was removed from the growth medium and especially after the aeration of the culture was interrupted. Significance and Impact of the Study: Mn(III) seems to be the cause of false positive laccase reactions. More reliable data on MnP activity can be obtained if the complex is decomposed by the fungus before MnP activity is measured in the medium.  相似文献   

13.
Lentinula edodes, commonly called shiitake, is considered a choice edible mushroom with exotic taste and medicinal quality. L. edodes grows very well and produces a range of enzymes when cultivated on eucalyptus residues. Development of appropriate experimental procedures for recovery and determination of enzymes became a widely important cash crop. In this work, enzymes produced by L. edodes were extracted using different pH buffer and determined regarding peroxidases and proteases. Lignin peroxidase (LiP) was not detected in the extracts based on veratryl alcohol or azure B oxidation. Proteases were very low while Mn-peroxidases (MnP) predominated. The optimal pH for MnP recovery was 5.0, under agitation at 25 degrees C. The oxidation of phenol red decreased after dark-colored small compounds or ions were eliminated by dialysis. The extract of L. edodes contained components of high molecular weight, such as proteases or high polyphenol, that could be involved in the LiP inactivation. L. edodes sample previously submitted to dialysis was also joined to LiP of Phanerochaete chrysosporium and a total inhibition of LiP was observed.  相似文献   

14.
Manganese dependent peroxidase (MnP) is the most ubiquitous peroxidase produced by white rot fungi. MnP is known to be involved in lignin degradation, biobleaching and in the oxidation of hazardous organopollutants. Bjerkandera sp. strain BOS55 is a nitrogen-unregulated white rot fungus which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. Therefore, the strain is a good candidate for use in large scale production of this enzyme. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, incubation temperature and the addition of organic acids. The fungus produced the highest level of MnP (up to 900 U 1−1) when the Mn concentration was 0.2 to 1 mM, the pH value was 5.2, and the incubation temperature was 30°C. A noteworthy finding was that MnP was also produced at lower levels in the complete absence of Mn. The addition of organic acids like glycolate, malonate, glucuronate, gluconate, 2-hydroxybutyrate to the culture medium increased the peak titres of MnP up to 1250 U 1−1. FPLC profiles indicated that the organic acids stimulated the production of all MnP isoenzymes present in the extracellular fluid of the fungus.  相似文献   

15.
Manganese supplementation of culture medium affected Phanerochaete flavido-alba FPL 106507 growth, glucose consumption and extracellular protein accumulation. Both the titre and time of detection of lignin peroxidase (LiP) were affected by manganese concentration in the medium, whereas with manganese peroxidase (MnP) only the titre was affected. In high Mn(II) containing cultures highest manganese peroxidase levels and a decrease in extracellular veratryl alcohol accumulation were observed. After FPLC a number of haemprotein peaks showing manganese peroxidase activity were detected in Mn(II) supplemented cultures. On the contrary, only haemprotein peaks of lignin peroxidase were detected in culture medium not supplemented with Mn(II).  相似文献   

16.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

17.
The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene.  相似文献   

18.
Manganese dependent peroxidase (MnP) is the main enzyme implicated in the biobleaching of kraft pulps by white rot fungi. The goal of this study was to evaluate the Mn requirement for biobleaching of eucalyptus oxygen delignified kraft pulp (OKP) by various white rot fungi: Trametes versicolor, Phanerochaete sordida, Phlebia radiata, Stereum hirsutum and Bjerkandera sp. strain BOS55. All of the strains tested produced MnP and provided extensive bleaching of OKP when 33 μM Mn was included in the medium. Bjerkandera sp. strain BOS55 was the only strain that also displayed MnP production and biobleaching activity of EDTA-extracted OKP in the complete absence of Mn. However, MnP and biobleaching activity in the absence of Mn was dependent on the presence of organic acids in the medium. The fact the biobleaching was correlated to MnP activity irrespective of whether Mn was present or absent suggests that there may be roles for MnP in Bjerkandera under Mn-deficient conditions. Although manganese-independent peroxidase (MIP) and lignin peroxidase (LiP) were also detected, the titres were much smaller in comparison with those of MnP, so their relative role in biobleaching can be predicted to have a minor importance in comparison with MnP. Only in the case of Bjerkandera, was the expression of LiP stimulated in the presence of oxalate but final brightness was not substantially affected.  相似文献   

19.
Pleurotus ostreatus No. 42 produced the ligninolytic enzymes, manganese peroxidase (MnP) and laccase, in agitation culture in glucose/peptone/wheat-bran medium. Formation of mycelial pellets 1-2 mm in diameter was essential for the production of MnP; and the concentration of dissolved oxygen in the culture medium greatly influenced the production of MnP, a concentration over 5 ppm being necessary for MnP production. The maximal activity of MnP was obtained on days 7-9 of culture, after the consumption of nutrient glucose. Introduction of oxygen from the start of the cultivation caused large pellet formation, which resulted in a low MnP activity level. P. ostreatus No. 42 produced two MnP isozymes in agitation culture. The major isozyme, F-2, was 36.4 kDa and had a pI of 3.95. The MnP characteristics, Km values, dependence on Mn2+ and optimum pH showed the similarity between this isozyme and MnP 3, which was produced under different culture conditions. Analysis of the N-terminal amino acid sequence indicated the close similarity of F-2 to MnP 3.  相似文献   

20.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号