首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

2.
Calmodulin stimulation of renal (Ca2+ + Mg2+)-ATPase   总被引:1,自引:0,他引:1  
  相似文献   

3.
The addition of cupric-1,10,-phenanthroline, a cross-linking catalyst, to sarcoplasmic reticulum membranes caused protein sulfhydryl groups to form disulfide bridges. Following a short exposure to the catalyst (15 s, 22 degrees C) most of the protein was in a dimeric form (Mr = 248 000). Longer exposure times resulted in the formation of trimers, tetramers and other oligomers too large to enter the gel. At low temperatures (4 degrees C) dimer formation predominates even for exposure times as long as 5 min. Cross-linking in the presence of 7.5 mM Triton X-100 (a concentration that resulted in clearing of the membrane suspension and thus solubilization of the membrane components) showed the appearance of a considerable dimer fraction, however, most of the (Ca2+ + Mg2+)-ATPase protein appeared as a monomer. Following 1 min of cross-linking at 22 degrees C, freeze-etched membranes showed no alteration in the number or appearance of 80 A intramembranous particles. Thus extensive cross-linking of the (Ca2+ + Mg2+)-ATPase protein can occur without disruption of the normal position of the intramembrane portion of the molecule.  相似文献   

4.
5.
Differential scanning calorimetry, fluorescence spectroscopy and freeze-fracture electron microscopy have been applied to a study of the reconstituted Ca2+-ATPase proteins from sarcoplasmic reticulum when they are incorporated into pure lipid/water systems. The results obtained with these techniques have been used to examine the effects of this intrinsic protein upon the surrounding lipid at temperatures above and below the main lipid solid-fluid phase transition temperature (Tc). 1. Above this Tc value, the freeze-fracture data show that the proteins are randomly distributed within the plane of the bilayer. The fluorescence data show that as the protein content in the bilayer increases, so does the 'microviscosity'. 2. Below Tc the proteins occur in high protein to lipid patches, separate from the remaining crystalline lipid. The fluorescence data indicate that at these temperatures the presence of the protein causes a decrease in microviscosity, whilst the calorimetric data indicate a decrease in enthalpy of the main lipid transition. 3. A premelting of the high protein to lipid patches formed by phase separation within the lipid bilayers is indicated by the calorimetric and fluorescence data. This observation is used to rationalise the 'anomalous' properties of the dipalmitoyl phosphatidylcholine-ATPase of exhibiting activity at temperatures well below the lipid phase transition at 41 degrees C.  相似文献   

6.
7.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

8.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

9.
10.
Hexachlorocyclohexanes have been shown to inhibit the (Ca2+ + Mg2+)-ATPase of muscle sarcoplasmic reticulum reconstituted into bilayers of dioleoylphosphatidylcholine. However, for the ATPase reconstituted into bilayers of dimyristoleoylphosphatidylcholine, a pattern of activation at low concentration followed by inhibition at higher concentration is seen for hexachlorocyclohexanes and alkanes such as decane and hexadecane. The ATPase in sarcoplasmic reticulum vesicles is also inhibited by the hexachlorocyclohexanes. The effects of hexachlorocyclohexanes on activity are largely independent of concentrations of Ca2+ and ATP. Inhibition is more marked at lower temperatures. The hexachlorocyclohexanes quench the tryptophan fluorescence of the ATPase, and the quenching can be used to obtain partition coefficients into the membrane system. As for simple lipid bilayers, partition exhibits a negative temperature coefficient. Binding is related to effects on ATPase activity.  相似文献   

11.
ATP hydrolysis by a partially purified (Ca+Mg)-ATPase preparation from rat brain increased with substrate concentration in a biphasic fashion, with apparentK m values of 3 M and 0.1 mM. Ca-dependent phosphorylation, however, had only a singleK m value, 3 M. KCl increased ATPase activity in both concentration ranges, but theK 0.5 for KCl decreased from 7 mM to 0.3 mM as the ATP concentration was reduced from 1 mM to 10 M. TheK 0.5 for MgCl2 decreased somewhat less, from 3 mM to 0.6 mM with ATP concentrations from 1 mM to 1 M, but was far lower for steady-state phosphorylation, 0.03 mM. (Ca+Mg)-dependent hydrolysis was not demonstrable with other nucleotide triphosphates or p-nitrophenyl phosphate, and these substances, as well as a reaction product, Pi, were also inhibitors. On the other hand, ADP inhibited at both ATP concentration ranges, and also stimulated dephosphorylation. This pattern of responses to substrate and cations is reminiscent of that of well-characterized transport ATPases, suggesting similar roles and mechanisms.  相似文献   

12.
13.
The fluorescence quenching properties of a brominated derivative of androstenol 5 alpha,6 beta-dibromoandrostan-3 beta-ol have been used to study binding to phospholipid bilayers and to the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum of rabbit skeletal muscle. It is shown that androstenol is excluded from the phospholipid/protein interface of the ATPase but can bind to other (non-annular sites) on the ATPase. Binding to these sites increases in strength with decreasing chain length for the phospholipids present in the system. Binding is also stronger in the presence of phospholipids in the gel phase than in the liquid crystalline phase. Androstenol increases the ATPase activity of the ATPase reconstituted with phosphatidylcholines of chain lengths less than C18, but has no effect on activity for the ATPase reconstituted with phosphatidylcholines of chain lengths C18 or greater. The effects of cholestanols on the activity of the ATPase reconstituted with dimyristoleoylphosphatidylcholine depend on the configuration of the sterol, with 5 alpha-cholestan-3 alpha-ol having little effect but the other isomers causing a marked stimulation.  相似文献   

14.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

15.
Red blood cell lysis is a common symptom following severe or prolonged oxidative stress. Oxidative processes occur commonly in sickle cells, probably mediated through denatured hemoglobin and the accumulation of ferric hemes in the membranes. Calmodulin-stimulated (Ca2+ + Mg2+)-ATPase from sickle red cell membranes is partially inactivated (Leclerc et al. (1987) Biochim. Biophys. Acta 897, 33-40). In this study (Ca2+ + Mg2+)-ATPase activity from normal adult erythrocyte membranes was measured in the presence of hemin. We report a time- and concentration-dependent inhibition of the activity of the enzyme by hemin due to a decrease in the maximum velocity. Only a mild inhibitory effect was observed in the presence of iron-free protoporphyrin IX, indicating the catalytic influence of the iron. Experiments carried out with hemin (ferric iron) liganded with imidazole or with reduced protoheme (ferrous iron) liganded with carbon monoxide, demonstrated that the inhibition requires that hemin be capable of binding additional ligands. The inhibition was not influenced by the absence of oxygen but was prevented by addition of bovine serum albumin. Addition of butylated hydroxytoluene, a protective agent of lipid peroxidation, failed to prevent the inhibition of calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. As dithiothreitol partially restores the enzyme activity, we postulated that hemin interacts with the thiol groups of the enzyme.  相似文献   

16.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

17.
(Ca2+ + Mg2+)-ATPase in enriched sarcolemma from dog heart   总被引:1,自引:0,他引:1  
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at 3000 X g followed by sedimentation of a microsomal fraction at 200 000 X g. The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591--1.1083 were characterized by (Na+ + K+)-ATPase activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 micron. These fractions contained (Ca2+ + Mg2+)-ATPase which appreared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5--10 microM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell.  相似文献   

18.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

19.
  • 1.1. The objective of the present study was to determine the effect of age and taurine on chick B cell calcium uptake and membrane (Ca2+ + Mg2+)-ATPase activity in 1–4-week-old chicks.
  • 2.2. The calcium uptake rate decreased with age (P < 0.05) and was further decreased by taurine (P < 0.05).
  • 3.3. (Ca2+ + Mg2+)-ATPase activity increased with age (P < 0.05) and was stimulated by taurine (P < 0.05).
  • 4.4. The data demonstrate that the flux of calcium across the B-cell membrane changes during early post-hatch development, and that taurine regulates both the influx and efflux of calcium in chick B-cells.
  相似文献   

20.
1. The kinetic and physicochemical properties of the calcium-pumping protein, (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) were studied in ghost membranes isolated from porcine erythrocytes. 2. The membrane-bound enzyme in situ has a specific activity of 3.12 +/- 0.08 micron/mg protein/hr and a Vmax of 3.47 +/- 0.21 mumol/mg protein/hr in the absence of calmodulin. 3. Its activity was stimulated by calmodulin about 5-fold. The enzyme is also highly sensitive to inhibition by vanadate (Ki = 1.6 +/- 0.2 microM). 4. Calmodulin also affects the pH- and Ca2+-sensitivity of the enzyme. The optimum pH, in the presence of calmodulin, is 7.5 and the optimum temperature is 38 degrees C with an activation energy of 11.9 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号