首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrate striated muscle, troponon-tropomyosin is responsible, in part, not only for transducing the effect of calcium on contractile protein activation, but also for inhibiting actin and myosin interaction when calcium is absent. The regulatory troponin (Tn) complex displays several molecular and calcium binding variations in cardiac muscles of different species and undergoes genetic changes with development and in various pathologic states.Extensive reviews on the role of tropomyosin (Tm) and Tn in the regulation of striated muscle contraction have been published describing the molecular mechanisms involved in contractile protein regulation. In our studies, we have found an increase in Mg2+ ATPase activity in cardiac myofibrils from dystrophic hamsters and in rats with chronic coronary artery narrowing. The abnormalities in myofibrillar ATPase activity from cardiomyopathic hamsters were largely corrected by recombining the preparations with a TnTm, complex isolated from normal hamsters indicating that the TnTm, may play a major role in altered myocardial function. We have also observed down regulation of Ca2+ Mg2+ ATPase of myofibrils from hypertrophic guinea pig hearts, myocardial infarcted rats and diabetic-hypertensive rat hearts. In myosin from diabetic rats, this abnormality was substantially corrected by adding troponin-tropomyosin complex from control hearts. All of these disease models are associated with decreased ATPase activities of pure myosin and in the case of rat and hamster models, shifts of myosin, heavy chain from alpha to beta predominate.In summary, there are three main troponin subunit components which might alter myofibrillar function however, very few direct links of molecular alterations in the regulatory proteins to physiologic and pathologic function have been demonstrated so far.  相似文献   

2.
Studies were conducted to examine the effects of chronic adrenalectomy (Adx) and adrenalectomy plus glucocorticoid replacement therapy on rat cardiac contractile protein ATPase activities. The Ca2+-dependent Mg-ATPase activity of myofibrils isolated from rat ventricles 3 weeks postadrenalectomy (Adx) was significantly decreased at all pCa2+ concentrations (P less than 0.01), compared to sham-operated (SO) rats. Similarly, Ca2+-, K+-EDTA, and actin-activated myosin ATPase activities of Adx rat hearts were markedly decreased below that of SO rats (P less than 0.01). Dexamethasone administration to Adx rats prevented the decrease of Ca2+- and K+-ATPase activities of myosin, but not of myofibrillar Ca2+-dependent Mg-ATPase or actin-activated myosin Mg-ATPase activities. These studies suggest that glucocorticoid insufficiency induced by adrenalectomy results in altered myocardial contractile protein ATPase activity which may underlie impaired cardiac performance.  相似文献   

3.
Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types.  相似文献   

4.
Our group has documented that myocardial performance is impaired in the hearts of chronically diabetic rats and rabbits. Abnormalities in the contractile proteins and regulatory proteins may be responsible for the mechanical defects in the streptozotocin (STZ)-diabetic hearts. Previously, the major focus of our research on contractile proteins in abnormal states has concentrated on myosin ATPase and its isoenzymes. Our present study is based on the overall hypothesis that regulatory proteins, in addition to contractile protein, myosin contribute to altered cardiac contractile performance in the rat model of diabetic cardiomyopathy. The purpose of our research was to define the role of cardiac regulatory proteins (troponin-tropomyosin) in the regulation of actomyosin system in diabetic cardiomyopathy.For baseline data, myofibrillar ATPase studies were conducted in the myofibrils from control and diabetic rats. To focus on the regulatory proteins (troponin and tropomyosin), individual proteins of the cardiac system were reconstituted under controlled conditions. By this approach, myosin plus actin and troponin-tropomyosin from the normal and diabetic animals could be studied enzymatically. The proteins were isolated from the cardiac muscle of control and STZ-diabetic (4 weeks) rats. Sodium dodecyl sulfate gel electrophoretic patterns demonstrate differences in the cardiac TnT and TnI regions of diabetic animals suggesting the different amounts of TnT and/or TnI or possibly different cardiac isozymes in the regulatory protein complex. Myofibrils probed with a monoclonal antibody TnI-1 (specific for adult cardiac TnI) show a downregulation of cardiac TnI in diabetics when compared to its controls. Enzymatic data confirm a diminished calcium sensitivity in the regulation of the cardiac actomyosin system when regulatory protein(s) complex was recombined from diabetic hearts. Actomyosin ATPase activity in the hearts of diabetic animals was partially reversed when myosin from diabetic rats was regulated with the regulatory protein complex isolated from control hearts. To our knowledge, this is the first study which demonstrates that the regulatory proteins from normal hearts can upregulate cardiac myosin isolated from a pathologic rat model of diabetes. This diminished calcium sensitivity along with shifts in cardiac myosin heavy chain (V1V3) may be partially responsible for the impaired cardiac function in the hearts of chronic diabetic rats. (Mol Cell Biochem151: 165–172, 1995)  相似文献   

5.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

6.
After prolonged ischemia followed by reperfusion of the isolated rat heart, irreversible heart failure is associated with creatine kinase leakage from the cells. The possible implications of MM creatine kinase leakage from myofibrillar compartments on the contractile properties of ventricular muscle have been studied in control versus ischemic hearts. Total creatine kinase activity decreased in ischemic cells while creatine kinase and ATPase activities were not modified in isolated myofibrils. The efficiency of creatine kinase and phosphocreatine in the relaxation of rigor tension in skinned ventricular preparations was not changed after ischemia. Furthermore, neither the pCa/tension relationship nor the rate of tension development following length changes were modified by ischemia. These results show that the contractile properties of myofilaments as well as the functional coupling between myosin ATPase and creatine kinase are preserved in ischemic hearts suffering irreversible contractile failure.  相似文献   

7.
1. Experiments were carried out to examine the biochemical changes, such as contractile protein biochemistry and membrane bound enzyme alterations associated with skeletal muscles of myd/myd. 2. Our studies demonstrate that there was a progressive decline in myofibrillar ATPase activity, and this decrease is greatest in 30 weeks old animals of myd/myd as compared to controls. 3. The proteolytic activity of myofibrils isolated from myd/myd was significantly higher than controls. 4. There was no significant difference in Ca2+ ATPase activity of myosin and actin-activated myosin ATPase activity of myd/myd and their controls. 5. Mg2+ ATPase and Na(+)+K(+)-ATPase of myodystrophic SL showed significant increase compared to controls. 6. Isoproterenol stimulated adenylate cyclase activity was significantly lower in the SL of dystrophic mice compared to controls. 7. GTP+isoproterenol stimulate adenylate cyclase was significantly higher in control SL and SR when compared to SL and SR isolated from myd/myd. 8. Guanylate cyclase activity was greater in myodystrophic mice both in the absence and presence of Triton X-100. cGMP and cAMP phosphodiesterase activities were greater in dystrophic mice as compared to controls. 9. These observations suggest that there are significant changes in myofibrillar ATPase, myofibrillar protease and membrane bound enzymes of myd/myd compared to control.  相似文献   

8.
Bundles of myofibrils prepared from the dorsal longitudinal flight muscles of giant water bugs show oscillatory contractile activity in solutions of low ionic strength containing ATP and 10-8-10-7 M Ca2+. This is due to delay between changes of length and changes of tension under activating conditions. The peculiarities of insect fibrillar muscle which give rise to this behavior are (1) the high elasticity of relaxed myofibrils, (2) a smaller degree of Ca2+ activation of ATPase activity in unstretched myofibrils and extracted actomyosin, and (3) a direct effect of stretch on ATPase activity. It is shown that the cross-bridges of striated muscle are probably formed from the heads of three myosin molecules and that in insect fibrillar muscle the cycles of mechanochemical energy conversion in the cross-bridges can be synchronized by imposed changes of length. This material is more suitable than vertebrate striated muscle for a study of the nature of the elementary contractile process.  相似文献   

9.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

10.
A new technique for obtaining a myofibril-like preparation from vertebrate smooth muscle has been developed. An actomyosin can be readily extracted from these myofibrils at low ionic strength and in yields 20 times as high as previously reported. The protein composition of all preparations has been monitored using dodecylsulfate-gel electrophoresis. By this method smooth muscle actomyosin showed primarily only the major proteins, myosin, actin and tropomyosin, while the myofibrils contained, additionally, three new proteins not previously described with polypeptide chain weights of 60000, 110000 and 130000. The ATPase activities of both the myofibrils and actomyosin preparations are considerably higher than previously described for vertebrate smooth muscle. They are sensitive to micromolar Ca2+ ion concentrations to the same degree as comparable skeletal and cardiac muscle preparations, even though troponin-like proteins could not be identified in these smooth muscle preparations. From the latter observation and the presence of Ca2+-sensitivity in tropomyosin-free actomyosin it is suggested that this calcium sensitivity is, as in some invertebrate muscles, a property of the myosin molecule.  相似文献   

11.
The MgATPase activity of unphosphorylated gizzard myosin is not stimulated by actin, but the MgATPase activities of unphosphorylated calf thymus and calf aorta myosins are stimulated by actin. This suggested that unphosphorylated thymus and aorta myosins, but not unphosphorylated gizzard myosin, should be able to cause movement. The contractile activities of these myosins were examined using "ghost" myofibrils, skeletal muscle myofibrils which have been depleted of myosin. Ghost myofibrils were reconstituted with unphosphorylated and phosphorylated turkey gizzard, calf aorta, and calf thymus myosins. While ghost myofibrils reconstituted with unphosphorylated gizzard myosin did not contract, those reconstituted with unphosphorylated thymus and aorta myosins did contract. All three phosphorylated myosins supported contraction.  相似文献   

12.
1. For a period of 31 days male rats were given a liquid diet containing 36% of its energy as ethanol. Liver mitochondria from these animals demonstrated lowered respiratory control with succinate as substrate, a diminished energy-linked anilinonaphthalene-sulphonic acid fluorescence response, and lowered endogenous ATP concentrations. The phospholipid/protein ratio in mitochondria from these animals was unchanged; only minor alterations in the phospholipid fatty acid composition were observed. 2. In experiments where mitochondria were incubated at 18 degrees C in iso-osmotic sucrose (aging experiments), the above energy-linked properties were lost at an earlier time in organelles from ethanol-fed animals. Phospholipase A2 acitivty was depressed in mitochondria from control animals until respiratory control was lost and ATP was depleted. In contrast, no lag in the expression of phospholipase activity was observed in mitochondria from ethanol-fed rats. This loss of control of the phospholipase resulted in an earlier degradation of membrane phospholipids under the conditions of the aging experiments. 3. The ATPase (adenosine triphosphatase) activities, measured in freshly prepared tightly coupled mitochondria and in organelles uncoupled with carbonyl cyanide p-trifluoromethoxyphenylhydrazone, were not significantly different in ethanol-fed and liquid-diet control animals. When the mitochondria were aged at 18 degrees C, the activity increased with time of incubation in organelles from both groups of animals. A lag was observed, however, as the ATPase activity increased in control preparations. This lag was not present as APTase activity increased in mitochondria from ethanol-fed animals. 4. The significantly lowered values observed for energy-linked functions with succinate as an energy source demonstrate that ethanol elicits an alteration in liver mitochondria that affects the site II-site III regions of the oxidative-phosphorylation system. The apparent lack of control of the phospholipase A2 and ATPase activities in mitochondria from ethanol-fed animals suggests that the membrane microenvironment of these enzymes has been altered such that they can exert their catabolic effects more readily under conditions of mild perturbation. The fatty acid analyses demonstrate that the observed alterations both in the energy-linked functions and in control of the phospholipase and ATPase are not mediated through changes in the acyl chain composition of bulk-phase phospholipids.  相似文献   

13.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

14.
The purpose of this study was to determine whether cardiac biochemical adaptations are induced by chronic exercise training (ET) of miniature swine. Female Yucatan miniature swine were trained on a treadmill or were cage confined (C) for 16-22 wk. After training, the ET pigs had increased exercise tolerance, lower heart rates during exercise at submaximal intensities, moderate cardiac hypertrophy, increased coronary blood flow capacity, and increased oxidative capacity of skeletal muscle. Myosin from both the C and ET hearts was 100% of the V3 isozyme, and there were no differences between the myosin adenosine triphosphatase (ATPase) or myofibrillar ATPase activities of C and ET hearts. Also, the sarcoplasmic reticulum Ca(2+)-ATPase activity and Na(+)-Ca2+ exchange activity of sarcolemmal vesicles were the same in cardiac muscle of C and ET hearts. Finally, the glycolytic and oxidative capacity of ET cardiac muscle was not different from control, since phosphofructokinase, citrate synthase, and 3-hydroxyacyl-CoA dehydrogenase activities were the same in cardiac tissue from ET and C pigs. We conclude that endurance exercise training does not provide sufficient stress on the heart of a large mammal to induce changes in any of the three major cardiac biochemical systems of the porcine myocardium: the contractile system, the Ca2+ regulatory systems, or the metabolic system.  相似文献   

15.
Steady state measurements of the ATP turnover rate of myosin crossbridges in relaxed living mammalian muscle or in in vitro systems are complicated by other more rapid ATPase activities. To surmount these problems we have developed a technique to measure the nucleotide turnover rate of fully relaxed myosin heads in myofibrils using a fluorescent analogue of ATP (mant-ATP). Rabbit myofibrils, relaxed in 1.6 mM ATP, were rapidly mixed with an equal volume of solution containing 80 microM mant-ATP and injected into a fluorimeter. As bound ADP is released, a fraction of the myosin active sites bind mant-ATP and fluorescence emission rises exponentially, defining a rate of nucleotide turnover of 0.03 +/- 0.001 s-1 at 25 degrees C (n = 17). This rate was approximately equal to one half that of purified myosin. The turnover rates for myosin and myofibrils increased between 5 degrees and 42 degrees C, reaching 0.16 +/- 0.04 s-1 and 0.06 +/- 0.005 s-1, respectively, at 39 degrees C, the body temperature of the rabbit. If the rate observed for purified myosin occurred in vivo, it would generate more heat than is observed for resting living muscle. When myosin is incorporated into the myofilament lattice, its ATPase activity is inhibited, providing at least a partial explanation for the low rate of heat production by living resting muscle.  相似文献   

16.
Diaphragm muscle weakness in patients with chronic obstructive pulmonary disease (COPD) is associated with increased morbidity and mortality. Recent studies indicate that increased contractile protein degradation by the proteasome contributes to diaphragm weakness in patients with COPD. The aim of the present study was to investigate the effect of proteasome inhibition on diaphragm function and contractile protein concentration in an animal model for COPD. Elastase-induced emphysema in hamsters was used as an animal model for COPD; normal hamsters served as controls. Animals were either treated with the proteasome inhibitor Bortezomib (iv) or its vehicle saline. Nine months after induction of emphysema, specific force-generating capacity of diaphragm bundles was measured. Proteolytic activity of the proteasome was assayed spectrofluorometrically. Protein concentrations of proteasome, myosin, and actin were measured by means of Western blotting. Proteasome activity and concentration were significantly higher in the diaphragm of emphysematous hamsters than in normal hamsters. Bortezomib treatment reduced proteasome activity in the diaphragm of emphysematous and normal hamsters. Specific force-generating capacity and myosin concentration of the diaphragm were reduced by ~25% in emphysematous hamsters compared with normal hamsters. Bortezomib treatment of emphysematous hamsters significantly increased diaphragm-specific force-generating capacity and completely restored myosin concentration. Actin concentration was not affected by emphysema, nor by bortezomib treatment. We conclude that treatment with a proteasome inhibitor improves contractile function of the diaphragm in emphysematous hamsters through restoration of myosin concentration. These findings implicate that the proteasome is a potential target of pharmacological intervention on diaphragm weakness in COPD.  相似文献   

17.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

18.
The action on muscle proteins of microbial transglutaminase (MTGase), which catalyzes the formation of a "zero-length" covalent cross-link between glutamine and lysine residues in peptides, was studied in order to define a basis for future application of MTGase cross-linking to the study of muscle protein interaction. We examined the cross-linking of skeletal muscle myosin, myosin subfragments, actin, and myofibrils by treatment with MTGase and the possible side-effects of the cross-linking on the enzymic activity of myosin, and found that the rod portions of myosin in myosin filaments were quickly cross-linked to each other by the action of MTGase, but myosin subfragment 1 was not cross-linked to actin. The MgATPase activities at 0.5 M KCl of myosin, heavy meromyosin, subfragment 1, and subfragment 1-actin were not significantly affected by the MTGase reaction. A very small fraction of the head portion of heavy meromyosin was cross-linked to actin in their rigor complexes by MTGase, and the ATPase activity at 0.5 M KCl of the cross-linked heavy meromyosin-actin complexes was slightly enhanced.  相似文献   

19.
The purpose of this study was to determine if selected biochemical parameters representing the contractile and calcium regulating systems of cardiac muscle scaled among mammals having inherently different resting heart rates (RHR). Eight mammalian species with RHR ranging from 51 to 475 beats per minute (bpm) were studied.The oxidative capacity of the myocardium is highly correlated with the RHR. The hypothesis of the present study was that the capacities of the energy utilizing processes of contraction and calcium regulation would also be correlated to the functional demand imposed on the muscle as represented by the RHR.Myosin (M) and myofibrillar (MF) ATPase activities, myosin isoenzyme distribution and sarcoplasmic reticulum (SR) ATPase activity were determined. Animals with RHR above 300 bpm express V1 myosin while animals with lower RHR express primarily V3. M and MF ATPase activities correlated with RHR, but the major difference in activities occurred at the threshold RHR of about 300 bpm at which the switch from V3 to V1 appears to occur. SR ATPase activity per mg of microsomal protein was for the most part constant among different mammals, but the SR ATPase activity per g of heart tissue was significantly correlated with RHR as slower beating hearts tended to yield less SR protein per unit mass.We conclude that both the contractile and calcium regulating systems are scaled to the functional parameter of RHR among different mammals. The contractile system uses a slow myosin ATPase isoform at low resting heart rates whereas above the postulated threshold RHR of about 300 bpm a switch in gene expression to a fast myosin ATPase isoform occurs. For the calcium regulating system, the heart does not seem to have the choice of altering the quality of the SR ATPase isoform and thus calcium regulating capacity is set by alterations in the quantity of SR per unit of heart mass.  相似文献   

20.
Role of creatine phosphokinase in cellular function and metabolism.   总被引:9,自引:0,他引:9  
This paper summarizes the data concerning the role of the creatine phosphokinase system in muscle cells with main attention to the cardiac muscle. Creatine phosphokinase isoenzymes play a key role in the intracellular energy transport from mitochondria to myofibrils and other sites of energy utilization. Due to the existence of the creatine phosphate pathway for energy transport, intracellular creatine phosphate concentration is apparently an important regulatory factor for muscle contraction which influences the contractile force by determining the rate of regeneration of ATP directly available for myosin ATPase, and at the same time controls the activator calcium entry into the myoplasm across the surface membrane of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号