首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The average conformations of adenosine, inosine and guanosine di- and triphosphates in neutral aqueous solution have been investigated by 1H vicinal couplings, chemical shifts and T1 relaxation time measurements at 250 MHz. Comparison of chemical shifts with those of the corresponding nucleotide monophosphates suggests that the beta-phosphate group is in all cases oriented towards the base and close to H3'. The vicinal coupling constants indicate that the proportion of the S conformer of the ribose moiety is 55--60% and that the gauche-gauche rotamer of the CH2-OP exocyclic group is predominant. The preferential orientations of the base have been determined by minimization of the standard deviation about the mean of the molecular reorientation correlation times derived from the H8, H1', H2' and H3' relaxation times and computed interproton distances. The problem of the correlation between the syn-anti equilibrium and the N equilibrium S interconversion has been examined. Typical magnetization recovery curves after a 180 degree pulse have been simulated in the case of ATP, taking into account cross relaxation effects. It is shown that in most of the molecules under consideration the syn orientation of the base is predominant whereas for ATP the syn and anti are equivalent.  相似文献   

2.
Abstract

Natural abundance 13C NMR spectra of duplexed (dC-dG)3 and (dC-dG)4 exhibit resolved resonances for most of the carbons at 0.1M NaCl in aqueous solution. Large transitions in chemical shift for many of the hexamer carbons (up to 1.8 ppm) are observed in variable temperature measurements. Determination of spin-lattice relaxation times and nuclear Overhauser enhancements in 0.1M NaCl indicate that the duplexes tumble almost isotropically, with overall correlation times near 5 nsec; the sugar carbons experience more rapid local motions than do the base carbons. The relaxation data are also consistent with the most rapid local motions occurring at the chain-terminal residues, especially in the Cyd(l) sugar. 4M NaCl causes changes in the 13C chemical shifts of most of the guanine base carbons, and rearrangements in the deoxyribose carbon shifts; this is consistent with changes predicted by a salt-induced B to Z transition, viz. conversion of the guanylates from the and to syn range about the glycosyl bond, and from the S to N pseudorotational state of the deoxyribose ring.  相似文献   

3.
The preferential orientations of the purine bases in dinucleoside monophosphates such as ApA, ApG, and GpA in 10?2M neutral aqueous solutions have been investigated by proton relaxation at 250 MHz. These orientations are deduced from computer simulations of the magnetization recovery curves following a 180° nonselective pulse. The distances between the H(8) proton of a base and the ribose ring protons which are used in these calculations are obtained by minimization as a function of the glycosyl torsion angle ? of the standard deviation between the isotropic reorientation correlation times τR derived from the relaxation rates of these protons. The average H(1′) – H(8) distance obtained by this procedure may be readily verified from the reduction of the H(1′) relaxation rate when H(8) is substituted by a deuteron. The limits of validity of the assumption of a single correlation time τR governing the proton relaxation have been estimated, taking into account several possible internal motions, e.g., the rotation of the base, of the methylene exocyclic group and the N ? S interconversion of the ribose ring. For 10?10 < τR < 2 × 10?10 sec, it appears that the influence of these motions on the proton relaxation becomes perceptible when the jump rates among equilibrium positions exceed ca. 109 sec?1. The whole of the experimental results show that for the ribose ring N conformer, the orientation of the bases is found in the ranges 60° < ? < 80° (syn) and 180° < ? < 210° (anti). For ribose S conformer, it is observed that this orientation is mainly syn with 5° < ? < 90°. The average H(1′) – H(8) distance provides semiquantitative information on the overall syn or anti orientations of the base in each nucleoside moiety. At 298 K the population of the anti conformer is found to increase in the order A- pG < Ap -G ~ Gp -A < Ap -A < A-pA < G-pA . A more detailed analysis of relaxation data shows that the maximum possible fraction of the stacked form of dinucleotides, due to the occurrence of N-anti conformers in both nucleoside moieties, is in the order ApG < GpA < ApA, in agreement with previous works, with however smaller values. Lastly the deuteron linewidth in position 8 of the bases indicates a synanti transition rate of the order of 109 sec?1 at room temperature, without noticeable effects therefore on the proton relaxation.  相似文献   

4.
C, N CP MAS and high resolution multinuclear NMR study of methyl

Four new derivatives of methyl

were studied by 1H, 13C, 15N NMR in CDCl3 solutions and by 13C, 15N NMR in the solid state. The replacement of one aryl substituent by another has no influence on the proton and carbon chemical shifts within the sugar moiety, in solution. The differences in 13C chemical shifts Δ = δliquid - δsolid are significant for C-3 (deshielding of -3.4 to -3.8 ppm), C-5 and OMe but not observed for C-2, where the ureido substituent is linked, thus indicating that this fragment of the structure is rigid. The values of Δ in 15N chemical shifts of N-3′ are -2.3 to -2.8 ppm (increase of shielding in the solids); the effect of replacement of substituent at aromatic ring is larger than the contribution of intermolecular H-bond interaction. The values of 15.5–16.1 Hz for 1JC-1′-N and 21.2–21.5 Hz for 1JCO-N indicate that the two C---N-3′ bonds are of significant double bond character.  相似文献   

5.
Three new natural products, 3,8-dimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone, 3,6,8-trimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone and 3,6,8,3′,4′-pentamethoxy-5,7-dihydroxyflavone were isolated from Melicope coodeana syn. Euodia simplex (Rutaceae) along with 3,6,3′-trimethoxy-5,7,4′-trihydroxyflavone and 3,3′-dimethoxy-5,7,4′-trihydroxyflavone. The structural assignments are based on 1H and 13C NMR data, including discussion of the chemical shifts of C-2 in 3,5-dihydroxy- and 3-methoxy-5-hydroxyflavones. The presence of highly methoxylated and methylenedioxyflavones is characteristic of the genus Melicope, and the present findings support the recent transfer of Euodia simplex to Melicope.  相似文献   

6.
An analog of adenosine 5′-triphosphate (ATP) was synthesized in which the C4′---C5′---O---Pα system is replaced by a trans C4′---CH=CH---Pα system. In the form of 1:1 complexes with Mg, this analog and its counterpart with a C4′---CH2---CH2---Pα system were linear competitive inhibitors, with respect to MgATP, of the MAT-II (normal tissue) and MAT-T (hepatoma tissue) forms of rat ATP: -methionine-S-adenosyltransferase (MAT); Km(ATP)/Ki values ranged from 0.4 to 2.4. 2′-Deoxy-ATP was a weak substrate, Km(ATP)/Km = 0.035, of MAT-II and a weak competitive inhibitor, Km(ATP)/Ki = 0.07, of MAT-T. These findings, together with interactions of the MAT forms with other substrates and inhibitors, indicate that binding of ATP to these transferases is accompanied by little rotation about the C5′---O5′ bond, and that C4′ and Pα are in a trans-type relationship in enzyme-bound ATP.  相似文献   

7.
The Ln(III)-induced shifts and Gd(III)-induced changes of the spin-lattice relaxation times were observed for the 1H and 13C resonances of uridine-5′-monophosphate (5′-UMP) in 2H2O solutions at pH 1.7–2.0. The vicinal spin-coupling constants changed little by the addition of lanthanide cations, indicating that the conformations of this mononucleotide remained almost the same upon complex formation. A general method was worked out for conformation studies of flexible molecules with lanthanide-ion probes and spin-coupling constants. This method was applied in an extensive computer search for 5′-UMP, and it was concluded that the observed Ln(III)-induced shifts, Gd(III)-induced changes of relaxation times, and vicinal spin-coupling constants could only be accounted for by a mixture of conformers. The populations of the major conformers, gg-3′-endo-anti, and gg-2′-endo-anti, amount to 46 ± 12% and 29 ± 11%, respectively. The correlation between local conformations are discussed on the basis of the present results.  相似文献   

8.
The effects of dibutyryl cyclic adenosine 3′ : 5′-monophosphate and ATP on isotope incorporation into phospholipids and the release of β-glucuronidase into the extracellular medium were studied in polymorphonuclear leukocytes from guinea pig peritoneal exudates. Exogenous dibutyryl cyclic adenosine 3′ : 5′-monophosphate (0.1–1.0 mM) reduced β-glucoronidase release induced by cytochalasin B in the absence of inert particles. It selectively inhibited 32Pi incorporation into phosphatidic acid and the phosphoinositides and the incorporation of myo-[2-3H]inositol into the phosphoinositides. Added ATP (0.1–1.0 mM), but not other nucleotides, was found to potentiate β-glucuronidase release provoked by cytochasin B, but it impaired the labeling of the phosphoinositides by myo-[2-3H]inositol. The mechanism of the inhibition of the isotope incorporation into these acidic phospholipids by the two nucleotides has not been defined. Dibutyryl cyclic adenosine 3′ : 5′-monophosphate at 2–4 mM concentration was not found to appreciably alter the incorporation of [γ-32P]ATP into phosphatidic acid, phosphatidylinositol, diphosphoinositide, and triphosphoinositide.  相似文献   

9.
Using fluorescent membrane markers, we have previously shown that extracellular ATP stimulates both exocytosis and membrane internalization in the Fisher rat thyroid cell line FRTL. In this study, we examine the actions of ATP using whole-cell recording conditions that favor stimulation of membrane internalization. ATP stimulation of the P2X7 receptor activated a reversible, Ca2+-permeable, cation conductance that slowly increased in size without changes in ion selectivity. ATP also induced a delayed irreversible decrease in cell capacitance (Cm) that was equivalent to an 8% decrease in membrane surface area. Addition of guanosine 5′-0-2-thiodiphosphate to the pipette solution inhibited the ATP-induced decrease in Cm without affecting channel activation. The effects of ATP on membrane conductance were mimicked by 2′,3′-O-(4-benzoylbenzoyl)-ATP, but not by UTP, adenosine, or 2-methylthio-ATP, and were inhibited by pyridoxal phosphate-6-azophenyl-2′4′-disulfonic acid, adenosine 5′-triphosphate-2′3′-dialdehyde, and Cu2+. The capacitance decrease persisted in Na+-, Ca2+- and Cl-free external saline or with Ca2+-free pipette solution. It is concluded that ATP activation of the inotropic P2X7 receptor stimulates membrane internalization by a mechanism that involves intracellular GTP, but does not require internal Ca2+ or influx of Na+ or Ca2+ through the receptor-gated channel.  相似文献   

10.
Aromatic amines and nitroarenes are important antioxidants and intermediates in the synthesis of dyes, pesticides and plastics. In the present paper we introduce methods for the synthesis of deuterated standards: 3-[2H8]aminofluoranthene, 3,3′-dimethyl-[2H4]benzidine, [2H4]benzidine, N′-acetyl-[2H4]benzidine, 2,4-[2H6]toluenediamine, 2,6-[2H6]toluenediamine. These standards have been used for the quantification of haemoglobin adducts of diamines and polyaromatic amines. Haemoglobin was hydrolysed in 0.1 M sodium hydroxide and the hydrolysate extracted with dichloromethane. The extracts were derivatised with heptafluorobutyric anhydride and analysed by GC–MS with negative chemical ionisation. In one run up to 15 aromatic amines can be determined: 6-aminochrysene, 3-aminofluoranthene, 2-aminofluorene, 1-aminopyrene, benzidine, 3,3′-dichlorobenzidine, 3,3′-dimethoxybenzidine, 3,3′-dimethylbenzidine, 3,3′-methylenedianiline, 4,4′-methylenedianiline, N′-acetyl-benzidine, N′-acetyl-4,4′-methylenedianiline, 4,4′-methylene bis(2-chloroaniline), 2,4-toluenediamine and 2,6-toluenediamine.  相似文献   

11.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

12.
Several synthetic adeonosine analogs: 8-fluoro-, 8-azido-, 8-iodo-, 8-methylthioadenosine; 8-bromo-2′-deoxyadenosine, 8-bromoxylofuranosyladenine, 5′-benzoly-8-bromoadenosine; 8,2′-S-, 8,2′-O-, 8,2′-NH-, 8,2′-N-CH3-, 8,3′,-S-, 8,3′-O-, 8,5′-S- and 8,5′O-cycloadenosine; 1-deaza- and 3-deazaadenosine, as well as tubercidine (7-deazaadenosine), were tested as substrates of calf intestine adenosine deaminase.It was found that the adenine base of adenosine should be in the range φrmCN = 0–120° (anti to syn-anti) and 8-fluoroadenosine was hydroylzed very slowly. The purine base should have N1, N3 or N7 atoms for the hydrolysis and only 1-deazaadenosine revealed an inhibitory effect toward the hydrolysis of adenosine.5′-OH group should be in the position of S-configuration and must not be substituted.  相似文献   

13.
Carbon-13 spin-lattice relaxation times, T1, have been measured in whole adrenal medullary tissue slices, in suspensions of isolated chromaffin granules, in the reconcentrated chromaffin granule lysate, and in various model solutions containing catecholamines, ATP, chromogranins and Ca2+. Reorientational correlation times have been calculated at 10°C using T1 data and nuclear Overhauser enhancemments for protonated carbons on both catecholamines and nucleotides. Correlation times in all media are relatively short and characteristic of highly fluid aqueous phases. Adrenalin and ATP exhibit substantial differences in correlation times in all media, however, the ratio γR(ATP):γR(catecholamine) ranging from 2.4 in simple 3:1 adrenalin-ATP solutions to 4 in intact chromaffin granules. This difference, as well as the relatively high absolute reorientational mobilities of both components, confirms the importance of labile ionic interactions between ATP and catecholamines, but rules out the presence of high concentrations of base-stacked structures. Participation of the chromogranins in ternary complexes with catecholamines and ATP appears to be of minor importance. Ionic interactions to the protein are not reflected in either 13C T1 values or chemical shifts of arginine or glutamate sidechain resonances, or in the 13C chemical shifts of ATP or catecholamines. Very labile protein-ATP binding appears to be reflected in the correlation time measurements, however, which show selective immobilization of ATP relative to catecholamine in the presence of soluble protein. Osmotic measurements indicate that solutions containing adrenaline, ATP and Ca2+ are highly nonideal, but probably not sufficiently so to account fully for the osmotic stabilization of the chromaffin granule aqueous phase. Even in the absence of specific intermolecular complexation, the chromogranins, through their polyelectrolyte properties, exert a significant influence on the intragranular osmolality. The osmotic lowering due to polyion-counterion interactions has been estimated semiquantitatively using a theory developed by Oosawa.  相似文献   

14.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

15.
NMR spin relaxation in the rotating frame (R) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond time scale. Here, we use amide 1H off-resonance R relaxation experiments to determine exchange parameters for processes that are significantly faster than those that can be probed using 15N or 13C relaxation. The new pulse sequence is validated using the E140Q mutant of the C-terminal domain of calmodulin, which exhibits significant conformational exchange contributions to the transverse relaxation rates. The 1H off-resonance R data sample the entire relaxation dispersion profiles for the large majority of residues in this protein, which exchanges between conformations with a time constant of approximately 20 μs. This is in contrast to the case for 15N, where additional laboratory-frame relaxation data are required to determine the exchange parameters reliably. Experiments were performed on uniformly 15N-enriched samples that were either highly enriched in 2H or fully protonated. In the latter case, dipolar cross-relaxation with aliphatic protons were effectively decoupled to first order using a selective inversion pulse. Deuterated and protonated samples gave the same results, within experimental errors. The use of deuterated samples increases the sensitivity towards exchange contributions to the 1H transverse relaxation rates, since dipolar relaxation is greatly reduced. The exchange correlation times determined from the present 1H off-resonance R experiments are in excellent agreement with those determined previously using a combination of 15N laboratory-frame and off-resonance R relaxation data, with average values of and 21 ± 3 μs, respectively.  相似文献   

16.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla (VtHb-CN) are reported. The assignments of the1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation timeT 1’s and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3+, and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pK a’s of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pK a is attributed to the influence of the Fe3+ of carrying positive charge and the coordination of His85 and Fe3+ of heme.  相似文献   

17.
Complex of a mutant ribonuclease T1 (Y4SW) with a non-cognizable ribonucleotide, 2′AMP, has been determined and refined by X-ray diffraction at 1.7 Å resolution. The 2′AMP molecule locates at a new base-binding site which is remote from the guanine-recognition site, where 2′GMP was found to be bound. The nucleotide adopts the anti conformation of the glycosidic bond and C3′-exo sugar pucker. There exists a single hydrogen bond between the adenine base and the enzyme, and, therefore, the site found is apparently a non-specific binding site. The results indicate that the binding of 2′AMP to the guanine-recognition site is weaker than that to the new binding site.  相似文献   

18.
An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct., 76, 81–92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341–346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2 or H3 or both indicates a high-syn/syn -angle. In an A-helix it is essentially the 5-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings.  相似文献   

19.
Changes in guanosine cyclic 3′,5′-monophosphate associated with adenosine cyclic 3′,5′-monophosphate and folic acid addition in the presence of ATP have been examined in Dictyostelium discoideum. Preincubation with 1 mM ATP had no effect on the basal cyclic GMP level but increased the cycli GMP accumulation in response to cylci AMP (5·10−8 M) or folic acid (5·10−6 M) 40–50%. ATP could not be replaced by ADP of 5′-adenylyliminodiphosphate. Because ATP has no effect on cyclic AMP receptor binding these results indicate that structural membrane alterations (e.g. membrane phosphorylation) may control the transduction of a chemotactic signal.  相似文献   

20.
Dinucleoside(5′,5′) polyphosphates (ApnA, ApnG, GpnG, n=3–6) are new group of hormones controlling important biological processes. Because some of the dinucleoside(5′,5′) polyphosphates are commercially not available purification of chemical synthesised dinucleoside(5′,5′) polyphosphates became necessary in order to test their physiological and pharmacological properties. It was the aim of this study to find a method which allows purification of 0.1–0.2 g quantities of dinucleoside polyphosphates by analytical HPLC columns yielding products with impurities lower than 1.0%. Adenosine(5′)-polyphospho-(5′)guanosines were synthesised by mixing the corresponding mononucleotides. The reaction results in a complex mixture of ApnA, ApnG and GpnG (with n=3–6 in all cases). The reaction mixture was concentrated on a preparative C18 reversed-phase column. The concentrate was displaced on a reversed-phase stationary. As a result of displacement chromatography, anion-exchange chromatography in gradient modus yielded baseline separated dinucleoside polyphosphates (homogeneity of the fractions>99%). The identity of the substances were determined by matrix assisted laser desorption ionisation mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号