首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis was used to study the structural basis of color diversity of fluorescent proteins by the example of two closely related proteins from one organism (coral polyp Zoanthus sp.), one of which produces green and the other, yellow fluorescence. As a result, the following conversions of emission colors were performed: from yellow to green, from yellow to a dual color (yellow and green), and from green to yellow. The saltatory character of the spectral transitions and the manifestation of the dual-color fluorescence suggest that chemically different fluorophores are responsible for the green and yellow fluorescence. The simultaneous presence of three residues, Gly63, Lys65, and Asp68, is necessary for the efficient formation of the yellow rather than green fluorophore.  相似文献   

2.
Chlorophyll fluorescence constitutes a simple, rapid, and non-invasive means to assess light utilization in Photosystem II (PS II). This study examines aspects relating to the accuracy and applicability of fluorescence for measurement of PS II photochemical quantum yield in intact leaves. A known source of error is fluorescence emission at 730 nm that arises from Photosystem I (PS I). We measured this PS I offset using a dual channel detection system that allows measurement of fluorescence yield in the red (660 nm < F < 710 nm) or far red (F > 710 nm) region of the fluorescence emission spectrum. The magnitude of the PS I offset was equivalent to 30% and 48% of the dark level fluorescence F0 in the far red region for Helianthus annuus and Sorghum bicolor, respectively. The PS I offset was therefore subtracted from fluorescence yields measured in the far red spectral window prior to calculation of PS II quantum yield. Resulting values of PS II quantum yield were consistently higher than corresponding values based on emission in the red region. The basis for this discrepancy lies in the finite optical thickness of the leaf that leads to selective reabsorption by chlorophyll of red fluorescence emission originating in deeper cell layers. Consequently, red fluorescence measurements preferentially sense emission from chloroplasts in the uppermost layer of the leaf where levels of photoprotective nonphotochemical quenching are higher due to increased photon density. It is suggested that far red fluorescence, corrected for the PS I offset, provides the most reliable quantitative basis for calculation of PS II quantum yield because of reduced sensitivity of these measurements to gradients in leaf transmittance and quenching capacity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Phytochelatin (PC) is involved in the detoxification of harmful, non-essential heavy metals and the homeostasis of essential heavy metals in plants. Its synthesis can be induced by either cadmium (Cd) or copper (Cu), and can form stable complexes with either element. This might suggest that PC has an important role in determining plant tolerance to both. However, this is not clearly apparent, as evidenced by a PC-deficient and Cd-sensitiveArabidopsis mutant (cad1-3) that shows no significant increase in its sensitivity to copper. Therefore, we investigated whether the mechanism for Cu tolerance differed from that for Cd by analyzing copper sensitivity in Cd-tolerant transgenics and Cd-sensitive mutants ofArabidopsis. Cadmium-tolerant transgenic plants that over-expressedA. thaliana phytochelatin synthase 1 (AtPCS1) were not tolerant of copper stress, thereby supporting the hypothesis that PC is not primarily involved in this tolerance mechanism. We also investigated Cu tolerance incad2-1, a Cd-sensitive and glutathione (GSH)-deficientArabidopsis mutant. Paradoxically,cad2-1 was more resistant to copper stress than were wild-type plants. This was likely due to the high level of cysteine present in that mutant. However, when the growth medium was supplemented with cysteine, the wild types also exhibited copper tolerance. Moreover,Saccharomyces cerevisiae that expressedAtPCS1 showed tolerance to Cd but hypersensitivity to Cu. All these results indicate that PC is not a major factor in determining copper tolerance in plants.  相似文献   

4.
Fluorescent proteins homologous to green fluorescent protein (avGFP) display pronounced spectral variability due to different chromophore structures and variable chromophore interactions with the surrounding amino acids. To gain insight into the structural basis for yellow emission, the 3D structure of phiYFP (λem = 537 nm), a protein from the sea medusa Phialidium sp., was built by a combined homology modeling – mass spectrometry approach. Mass spectrometry of the isolated chromophore-bearing peptide reveals that the chromophore of phiYFP is chemically identical to that of avGFP (λem = 508 nm). The experimentally acquired chromophore structure was combined with the homology-based model of phiYFP, and the proposed 3D structure was used as a starting point for identification of the structural features responsible for yellow fluorescence. Mutagenesis of residues in the local chromophore environment of phiYFP suggests that multiple factors cooperate to establish the longest-wavelength emission maximum among fluorescent proteins with an unmodified GFP-like chromophore.  相似文献   

5.
Summary Pot trials were carried out on plants ofHaumaniastrum katangense, Haumaniastrum robertii andAeolanthus biformifolius. These metallophytes from Zaïre were grown in substrates containing from 0–10,000 g/g (0–1%) copper or cobalt. The tolerance of each species was determined and for cobalt was highest inH. robertii (4000 g/g) and for copper was highest inAeolanthus biformifolius (9000 g/g). Discontinuities in the plant-soil curves for each element indicate an exclusion mechanism operating for all three species at lower concentrations of the element in the soil. All species would grow in soils containing only traces of cobalt or copper and this indicated that uptake of heavy metals was not linked to a physiological requirement for either element. The plant-soil relationship for cobalt (P<0.001) was sufficiently good for all three species for them to be useful in biogeochemical prospecting for this element.  相似文献   

6.
Summary Oxygenation of native hemocyanins fromHelix pomatia andPanulirus interruptus under conditions of cooperative binding, causes a change in the dynamic behaviour of the internal structure, leading to increased rotational mobility of a class of tryptophan residues emitting above 450 nm. This is associated with the complete depolarization of the emission on a time scale where the large hemocyanin is practically immobile. This class is thought to be very near the active site since it is strongly affected by the copper atoms. Moreover, fluorescence changes of the class of chromophores emitting above 450 nm is more marked in the molluscanHelix hemocyanin than in the arthropodanPanulirus hemocyanin, suggesting a possible difference in the structure of the active site or in the extent of the allosteric transition between the two species. This class of chromophores may by useful probes to monitor ligand-linked conformational change in hemocyanins.  相似文献   

7.
The legume root rot disease caused by the oomycete pathogen Aphanomyces euteiches is one major yield reducing factor in legume crop production. A comparative proteomic approach was carried out in order to identify proteins of the model legume Medicago truncatula which are regulated after an infection with A. euteiches. Several proteins were identified by two dimensional gel electrophoresis to be differentially expressed after pathogen challenge. Densitometric evaluation of expression values showed different regulation during the time-course analysed. Proteins regulated during the infection were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Among the differentially expressed proteins, two encoded putative cell wall proteins and two were designated as small heat shock proteins. Furthermore, an isoform of the chalcone-O-methyltransferase was found to be increased in infected roots. The majority of induced proteins belonged to the family of class 10 of pathogenesis related proteins (PR10). Previously, various PR10-like proteins have been shown to be regulated by general stress or abscisic acid (ABA). Therefore, these proteins were further investigated concerning their regulation in response to drought stress and exogenous ABA-application. Complex regulation patterns were identified: three of the A. euteiches-induced PR10-like proteins were also induced by exogenous ABA- but none of them is induced after drought stress. In contrast, three of these proteins are down-regulated by drought stress. Hence, the strong expression of different PR10-family members and their regulation profiles indicates that this set of proteins plays a major role during root adaptations to various stress conditions.  相似文献   

8.
Unicellular autofluorescent picoplankton ranging from 0.4 to 1.5 µm in diameter were found to be a significant component of phytoplankton in the North Basin of Lake Biwa during early summer in 1989 and 1990. The abundance of these picoplankton varied seasonally by about three orders of magnitude with one maximum of up to 106 cells ml–1. Bloom-forming picoplankton were isolated by dilution and further cultivated in liquid medium. Three clones were found to be representative species of the bloom. Using epifluorescence and electron microscopy as well as absorption and fluorescence emission spectroscopy, we examined these clones according to shape and pigment composition. They have ringlike thylakoids, are photosynthetically active and have no nuclear envelope. The cyanobacterial clones isolated represent three types containing phycobilisomes with either phycocyanin or phycoerthrin as the dominant accessory pigment. They are described here as three new species, two phycoerythrin-rich types and one phycocyanin-rich type, all of them belonging to the Synechococcus group. The differences found by fluorescence emission of isolated clones are discussed with respect to in situ strain identification.  相似文献   

9.
Identification of a copper transporter family in Arabidopsis thaliana   总被引:7,自引:0,他引:7  
Despite copper ions being crucial in proteins participating in plant processes such as electron transport, free-radical elimination and hormone perception and signaling, very little is known about copper inward transport across plant membranes. In this work, a five-member family (COPT1–5) of putative Arabidopsis copper transporters is described. We ascertain the ability of these proteins to functionally complement and transport copper in the corresponding Saccharomyces cerevisiae high-affinity copper transport mutant. The specific expression pattern of the Arabidopsis COPT1–5 mRNA in different tissues was analyzed by RT-PCR. Although all members are ubiquitously expressed, differences in their relative abundance in roots, leaves, stem and flowers have been observed. Moreover, steady-state COPT1 and COPT2 mRNA levels, the members that are most efficacious in complementing the S. cerevisiae high-affinity copper transport mutant, are down-regulated under copper excess, consistent with a role for these proteins in copper transport in Arabidopsis cells.  相似文献   

10.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

11.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Zhang  Jing-Liu 《Photosynthetica》2003,41(4):589-595
Two new yellow rice chlorophyll (Chl) b-less (lack) mutants VG28-1 and VG30-5 differ from the other known Chl b-less mutants with larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small sub-unit and smaller amounts of Chl a. We investigated the altered features of Chl-protein complexes and excitation energy distribution in these two mutants, as compared with wild type (WT) rice cv. Zhonghua 11 by using native mild green gel electrophoresis and SDS-PAGE, and 77 K Chl fluorescence in the presence of Mg2+. WT rice revealed five pigment-protein bands and fourteen polypeptides in thylakoid membranes. Two Chl b-less mutants showed only CPI and CPa pigment bands, and contained no 25 and 26 kDa polypeptides, reduced amounts of the 21 kDa polypeptide, but increased quantities of 32, 33, 56, 66, and 19 kDa polypeptides. The enhanced absorption of CPI and CPa and the higher Chl fluorescence emission ratio of F685/F720 were also observed in these mutants. This suggested that the reduction or loss of the antenna LHC1 and LHC2 was compensated by an increment in core component and the capacity to harvest photon energy of photosystem (PS) 1 and PS2, as well as in the fraction of excitation energy distributed to PS2 in the two mutants. 77 K Chl fluorescence spectra of thylakoid membranes showed that the PS1 fluorescence emission was shifted from 730 nm in WT rice to 720 nm in the mutants. The regulation of Mg2+ to excitation energy distribution between the two photosystems was complicated. 10 mM Mg2+ did not affect noticeably the F685/F730 emission ratio of WT thylakoid membranes, but increased the ratio of F685/F720 in the two mutants due to a reduced emission at 685 nm as compared to that at 720 nm.  相似文献   

12.
Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was used to study the properties of uranium complexes (emission spectra and fluorescence lifetimes) formed by the cells of the three recently described eco-types of Acidithiobacillus ferrooxidans. The results demonstrated that these complexes have different lifetimes which increase in the same order as the capability of the strains to accumulate uranium. The complexes built by the cells of the eco-type II were the strongest, whereas, those of the eco-types I and III were significantly weaker. The emission spectra of all A. ferrooxidans complexes were almost identical to those of the uranyl organic phosphate compounds. The latter finding was confirmed by infrared spectroscopic analysis.  相似文献   

13.
Mitchell  R. L.  Burchett  M. D.  Pulkownik  A.  McCluskey  L. 《Plant and Soil》1988,112(2):195-199
The effect of soil-incorporated copper, tri-allate, and anthracene on the emergence and early growth of three Australian native species (Banksia ericifolia, Casuarina distyla andEucalyptus eximia) and three crop species (Avena sativa, Cucumis sativus andGlycine max), was assessed using OECD Test Guideline 208. The crop species are sensitive species used in overseas phytotoxicity testing, and their responses were compared with those of the native species. Seeds were grown in pots in a glasshouse in a sandy loam soil at the chemical concentrations of 0, 10, 100, 1000 and 2000 mg kg–1. LC50 and EC50 values were determined for each species. The most sensitive species was the monocotyledonA. sativa, while among the five dicotyledonsC. distyla was most sensitive. All three chemicals delayed emergence and affected seedling growth. The results indicate that the conditions of the OECD Test Guideline can be met under Australian conditions, but that the Guideline requires modification for use with Australian native species.  相似文献   

14.
The influence of the early stages of fungal infection on chloroplast metabolism was studied in cultivar/race-specific interactions between potato (Solanum tuberosum L. cv. Datura) and the late-blight fungusPhytophthora infestans. The accumulation of several mRNAs encoding components of the photosynthetic apparatus was not affected, either in compatible or in incompatible interactions. However, within 3 h after inoculation of potato leaves with fungal spores, a change in the photochemistry of photosystem II was detectable by measuring chlorophylla fluorescence. Characteristic fluorescence parameters, such as maximum fluorescence yield (Fm), variable fluorescence yield (Fv) and photochemical efficiency (Fv/Fm), were specifically reduced in the compatible host/pathogen interaction. Analyses of photochemical and nonphotochemical fluorescence quenching showed an increase in the photochemical fraction. The amounts of two selected thylakoid membrane proteins and of total chlorophyll remained unchanged during this process, suggesting that the functional modification of the electron-transport system was not correlated with a change in the composition of the photosynthetic apparatus. The alterations of photosynthetic electron transport represent a rapidly detectable and sensitive physiological marker for compatible interactions in the potato/Phytophthora infestans pathosystem.  相似文献   

15.
Summary We examined the possibility that the ssb-1 and ssb-113 mutants exert some of their effects by interfering with the normal function of wild-type RecF protein. Consistent with this possibility, we found that recA803, which partially suppresses recF mutations, also partially suppresses both ssb mutations, as detected by an increase in UV resistance. No evidence was obtained for suppression of the defect in lexA regulon inducibility caused by the ssb mutations. Consequently we suggest that suppression occurs by increasing recombinational repair. In vitro tests of Ssb mutant and wild-type proteins revealed that the single-stranded DNA dependent ATPase activity of RecA protein is more susceptible to inhibition than the joint-molecule-forming activity. All three Ssb proteins inhibit the ATPase activity of RecA wild-type protein almost completely while under similar conditions they inhibit the joint-molecule-forming activity only slightly. Both activities of RecA803 protein were found to be less inhibited by the three Ssb proteins than those of RecA wild-type protein. This is consistent with the suppressing ability of recA803. We found no evidence to contradict the previously proposed hypothesis that ssb-1 affects recombinational repair by acting as a weaker form of Ssb protein. We found, however, only very weak evidence that Ssb-113 protein interferes directly with recombinational repair so that the possibility that it interferes with a normal function of RecF protein must remain open.  相似文献   

16.
A specific method was developed for monitoring the concentration of cyanobacteria (blue-green algae) before waterblooms, based on their characteristics ofin vivo fluorescence. The excitation and emission spectra of cyanobacteria are very different from those of eukaryotic algae, due to the importance of phycocyanin, rather than chlorophylla, in determining the fluorescence characteristics. Our results, based on four cyanobacteria:Microcystis aeruginosa, Anabaena cylindrica, Phormidium tenue andSpirulina platensis, indicate that excitation at 620 nm and its emission at 645 nm is a sensitive and specific method for their detection. Furthermore, the addition of 10 M photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) induced only 3% increase in phycocyanin fluorescence, suggesting that this measurement is almost independent of the ongoing rate of photosynthesis.Author for correspondence  相似文献   

17.
We present here the experimental strategies, first results and identified bottlenecks of a structural genomics initiative on membrane proteins of the hyperthermophilic archaea Pyrococcus abyssi. Five ORFs coding for putative membrane proteins have been cloned and expressed in the methylotrophic Pichia pastoris expression system, using two different constructs, with or without the signal sequence α-mating factor of Saccharomyces cerevisiae. A c-myc epitope and 6 His codons were added at the 3′-end of the targeted genes to allow immunodetection of the recombinant proteins and to facilitate their further purification. We have selected at least one producer clone for each protein of interest and for almost every construction. All the membrane proteins were produced in Erlenmeyer flasks culture and in fed-batch cultivation for large-scale preparation. The proteins were detected in the membrane fractions of P. pastoris. Production efficiencies were relatively low in both production conditions but the quantities of biomass obtained during fed-batch cultivation have allowed us to collect sufficient amount of material for further purification. The proteins were extracted, solubilized and partially purified. Large-scale purification will be necessary for further structural work.  相似文献   

18.
Using a fluorospectrophotometer, we examined the fluorescence of a crude preparation from the spore masses ofDictyostelium discoideum. Fluorescence emission spectra and excitation spectra suggested that the fluorescence of the crude preparation was a lumazine-like fluorescence rather than a pterin-like fluorescence. By using a microspectrophotometer, we observedin situ the fluorescence emission of a lumazine-like substance localized only in the spore mass of the fruiting body.  相似文献   

19.
The full-length cDNA of a previously identified Solanum brevidens gene was isolated and characterised. DNA sequence analysis revealed an open reading frame that encodes a hybrid proline-rich cell wall protein of 407 amino acids. The putative protein was designated SbrPRP. The SbrPRP harbours three parts, an N-terminal signal peptide followed by a repetitive proline-rich domain and a cysteine-rich C-terminus resembling non-specific lipid-transfer proteins. The repetitive proline-rich domain contains two repeated motifs, PPHVKPPSTPK and PTPPIVSPP extended with TPKYP and TPKPPS motifs, respectively, at their N- or C-terminal. The SbrPRP gene of the non-tuberising Solanum species, Solanum brevidens, possesses highly homologous counterparts in the tuberising species, Solanum tuberosum (StPRP) and in the related species, Lycopersicum esculentum (TFM7). All three genes are present in single- or low copy number in the corresponding genome. Organ-specific expression of the genes, however, is different in the three solanaceous species.  相似文献   

20.
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker in plantations around the world and is of particular significance in Brazil where its incidence has risen exponentially over the past decade. Approximately one third of the predicted Xac open reading frames show no homology, or homology with very low score with that of known sequences. It is believed that Xac utilizes secretion systems to transfer virulence proteins into susceptible eukaryotic cells. This process is assisted by secretion chaperones that maintain virulence proteins partly or completely unfolded during translocation. We have cloned three of these hypothetical secretion chaperones: XAC0419 and XAC1346 from type III secretion system (TTSS) and XACb0033 from type IV secretion system (TFSS). All proteins were cloned in a pET23a vector (Novagen), expressed at 37 degrees C using a BL21(DE3)pLysS Escherichia coli strain and purified by ion exchange and gel-filtration chromatographic methods. Pure proteins were characterized using spectroscopic measurements: circular dichroism, and both static and lifetime emission fluorescence in the case of XACb0033. The analyzed proteins are stable at elevated temperatures (up to 65 degrees C) and exhibit alpha-helix content from approximately 30% (XACb003) to approximately 87% (XAC1346). XACb0033 exhibits lifetimes in the fluorescence experiments that indicate different neighborhoods for its tryptophan residues. These chaperones have the characteristics of TTSS and TFSS: all are small, with a high alpha-helix content, and without ATP-binding or ATP-hydrolyzing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号