首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of benzene vapor from gaseous streams was studied in two identically sized lab-scale biofiltration columns: one filled with a mixture of raw sugarcane bagasse and glass beads, and the other one packed with a mixture of ground sugarcane bagasse and glass beads, in the same volume ratio, as filter materials. Separate series of continuous tests were performed, in parallel, under the same operating conditions (inlet benzene concentration of 10.0, 20.0 or 50.0 mg m(-3), and superficial gas velocity of 30.6, 61.2 or 122.4 m h(-1)) in order to evaluate and compare the influence of the packing material characteristics upon the biofilter effectiveness. The maximum elimination capacities obtained, at an inlet load of 6.12 g m(-3) h(-1), were 3.50 and 3.80 g m(-3)packibng material h(-1) with raw and ground sugarcane bagasse, respectively. This was a preliminary study and the results obtained suggest only a limited application with more work needed.  相似文献   

2.
Three laboratory scale biofilters filled with different packing materials (peat and sieved sugarcane bagasse) and operating with different microbial cultures (allochthonous and autochthonous bacteria) were run and monitored in parallel to assess the emission rate of airborne bacteria in the biofiltration of benzene-contaminated air streams. The effect of the fluid dynamic and loading conditions on the rate of microbial emission in the air environment was investigated by performing continuous experiments at different inlet benzene concentrations and superficial gas velocities. The experiments prove that the concentration of airborne bacteria in the effluent air from lab-scale biofilters is only slightly higher than in the ambient air. The emission rate is not dependent on superficial gas velocity because of low shear stress exerted by the gas flow. On the other hand, the loading conditions have a strong effect on the emission rate, which increases with increasing growth and degradation rate, and different packing media show remarkably different behaviors.  相似文献   

3.
Biofiltration of ethylbenzene vapours: influence of the packing material   总被引:3,自引:0,他引:3  
In order to investigate suitable packing materials, a soil amendment composed of granular high mineralized peat (35% organic content) locally available has been evaluated as carrier material for biofiltration of volatile organic compounds in air by comparison with a fibrous peat (95% organic content). Both supports were tested to eliminate ethylbenzene from air streams in laboratory-scale reactors inoculated with a two-month conditioned culture. In pseudo-steady state operation, experiments at various ethylbenzene inlet loads (ILs) were carried out. Maximum elimination capacity of about 120 g m(-3) h(-1) for an IL of 135 g m(-3) h(-1) was obtained for the fibrous peat. The soil amendment reactor achieved a maximum elimination capacity of about 45 g m(-3) h(-1) for an inlet load of 55 g m(-3) h(-1). Ottengraf-van den Oever model was applied to the prediction of the performance of both biofilters. The influence of gas flow rate was also studied: the fibrous peat reactor kept near complete removal efficiency for empty bed residence times greater than 1 min. For the soil amendment reactor, an empty bed residence time greater than 2 min was needed to achieve adequate removal efficiency. Concentration profiles along the biofilter were also compared: elimination occurred in the whole fibrous peat biofilter, while in the soil amendment reactor the biodegradation only occurred in the first 65% part of the biofilter. Results indicated that soil amendment material, previously selected to increase the organic content, would have potential application as biofilter carrier to treat moderate VOC inlet loads.  相似文献   

4.
Three laboratory-scale peat biofilters were operated at 90 s empty bed residence time (EBRT) for over a year. Biodegradation of ethyl acetate, toluene, or a 1:1 mixture were investigated. In first stage, inlet concentration was progressively increased from 0.4 to 4.5 g/m(3). The maximum elimination capacity (EC) found for ethyl acetate was 190 gC/m(3).h, and it was not affected by toluene. The maximum EC found for toluene as a sole contaminant was 150 gC/m(3).h, but the presence of ethyl acetate decreased the toluene maximum EC to 80 gC/m(3).h. From respirometry monitoring, values of 3.19 g CO(2)/gC and 3.06 g CO(2)/gC for pure ethyl acetate and pure toluene, respectively, were found, with overall yield coefficients of 0.13 g dry biomass produced per gram ethyl acetate consumed and 0.28 g dry biomass produced per gram toluene consumed. CO(2) production in the 1:1 mixture was successfully simulated. Dynamics of living and dead cells were monitored in four sections of the biofilters. Concentrations ranged between 2.6 x 10(9) and 3.0 x 10(10) cells per gram-dry peat for total bacteria, and 2.4 x 10(9)-1.9 x 10(10) cells per gram-dry peat for living bacteria. At high loads loss of bacterial density in the inlet zones, and increase in the dead cells percentages up to 60% was observed. In second stage, long-term performance at an inlet concentration of 1.5 g/m(3) was evaluated to show the process feasibility. Good agreement with previous data was obtained in terms of EC and CO(2) production. Restoration of living cells proportion was also observed.  相似文献   

5.
A 2-l (1-l working volume) two-phase partitioning bioreactor (TPPB) was used as an integrated scrubber/bioreactor in which the removal and destruction of benzene from a gas stream was achieved by the reactor's organic/aqueous liquid contents. The organic solvent used to trap benzene was n-hexadecane, and degradation of benzene was achieved in the aqueous phase using the bacterium Alcaligenes xylosoxidans Y234. A gas stream with a benzene concentration of 340 mg l(-1) at a flow rate of 0.414 l h(-1) was delivered to the system at a loading capacity of 140 g m(-3) h(-1), and an elimination capacity of 133 g m(-3 )h(-1) was achieved (the volume in this term is the total liquid volume of the TPPB). This elimination capacity is between 3 and 13 times greater than any benzene elimination achieved by biofiltration, a competing biological air treatment strategy. It was also determined that the evaluation of TPPB performance in terms of elimination capacity should include the cell mass present in the system, as this is a readily controllable quantity. A specific benzene utilization rate of 0.57 g benzene (g cells)(-1) h(-1) was experimentally determined in a bioreactor with a cell concentration that varied dynamically between 0.2 and 1 g l(-1). If it assumed that this specific benzene utilization rate (0.57 g g(-1) h(-1)) is independent of cell concentration, then a TPPB operated at high cell concentrations could potentially achieve elimination capacities several hundred times greater than those obtained with biofilters.  相似文献   

6.
Toluene biofiltration by the fungus Scedosporium apiospermum TB1   总被引:5,自引:0,他引:5  
The performance of biofilters inoculated with the fungus Scedosporium apiospermum was evaluated. This fungus was isolated from a biofilter which operated with toluene for more than 6 months. The experiments were performed in a 2.9 L reactor packed with vermiculite or with vermiculite-granular activated carbon as packing material. The initial moisture content of the support and the inlet concentration of toluene were 70% and 6 g/m3, respectively. As the pressure drop increased from 5-40 mm H2O a strong initial growth was observed. Stable operation was maintained for 20 days with a moisture content of 55% and a biomass of 33 mg biomass/g dry support. These conditions were achieved with intermittent addition of culture medium, which permitted a stable elimination capacity (EC) of 100 g/m3(reactor)h without clogging. Pressure drop across the bed and CO2 production were related to toluene elimination. Measurement of toluene, at different levels of the biofilter, showed that the system attained higher local EC (200 g/m3(r)h) at the reactor outlet. These conditions were related to local humidity conditions. When the mineral medium was added periodically before the EC decreases, EC of approximately 258 g/m3(r)h were maintained with removal efficiencies of 98%. Under these conditions the average moisture content was 60% and 41 mg biomass/g dry support was produced. No sporulation was observed. Evaluation of bacterial content and activities showed that the toluene elimination was only due to S. apiospermum catabolism.  相似文献   

7.
Biotechnological techniques, including biofilters and biotrickling filters are increasingly used to treat air polluted with VOCs (Volatile Organic Compounds). In this work, the start-up, the effect of the gaseous ammonia addition on the toluene removal rate, and the problems of the heat accumulation on the performance of a laboratory scale biofilter were studied. The packing material was sterilized peat enriched with a mineral medium and inoculated with an adapted consortium (two yeast and five bacteria). Start-up showed a short adaptation period and an increased toluene elimination capacity (EC) up to a maximum of 190 g/m3/h. This was related to increased CO2 outlet concentration and temperature gradients between the packed bed and the inlet (Tm-Tin). These events were associated with the growth of the microbial population. The biofilter EC decreased thereafter, to attain a steady state of 8 g/m3/h. At this point, gaseous ammonia was added. EC increased up to 80 g/m3/h, with simultaneous increases on the CO2 concentration and (Tm-Tin). Two weeks after the ammonia addition, the new steady state was 30 g/m3/h. In a second ammonia addition, the maximum EC attained was 40 g/m3/h, and the biofilter was in steady state at 25 g/m3/h. Carbon, heat, and water balances were made through 88 d of biofilter operation. Emitted CO2 was about 44.5% of the theoretical value relative to the total toluene oxidation, but accumulated carbon was found as biomass, easily biodegradable material, and carbonates. Heat and water balances showed strong variations depending on EC. For 88 d the total metabolic heat was -181.2 x 10(3) Kcal/m3, and water evaporation was found to be 56.5 kg/m3. Evidence of nitrogen limitation, drying, and heterogeneities were found in this study.  相似文献   

8.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors   总被引:4,自引:0,他引:4  
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop.  相似文献   

9.
ABSTRACT

A laboratory-scale biofilter unit packed with a mixture of compost, sugarcane bagasse, and granulated activated carbon (GAC) in the ratio of 55:30:15 by weight was used for a biofiltration study of air stream containing benzene, toluene, ethylbenzene, and o-xylene (BTEX). The effect of superficial velocity on mass transfer coefficient for the packing was studied by maintaining gas flow rates of 3, 4, 5, 6, and 8 L min?1 for inlet concentrations of 0.1, 0.4, and 0.8 g m?3 for each of benzene, toluene, ethylbenzene, and o-xylene. The maximum elimination capacity was found to be 20.92, 22.72, 20.73, and 18.94 g m?3 h?1 for BTEX, respectively, for stated flow rates. Removal efficiency of BTEX decreased from 99% to 71% for increasing inlet concentration from 0.1 to 0.8 g m?3. Gas film mass transfer coefficient predicted by modified Onda's equation was within ±10% of the experimental values.  相似文献   

10.
Thermophilic biofiltration of benzene and toluene   总被引:1,自引:0,他引:1  
In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.  相似文献   

11.
We performed a macrokinetic and quantitative microbial investigation of a continuously operating bench-scale biofilter treating styrene-polluted gases. The device was filled with a mixture of peat and glass beads as packing medium and inoculated with the styrene-oxidizing strain, Rhodococcus rhodochrous AL NCIMB 13259. The experimental data of styrene and microbial concentrations, obtained at different biofilter heights, were used to evaluate the pollutant concentration profiles as well as the influence of styrene loading on biomass distribution along the packing medium. Styrene and biomass concentration profiles permitted detection of a linear relationship between the amount of biomass grown in a given section of the biofilter and that of pollutant removed, regardless of the operating conditions tested. Biomass development in the bed appeared to: depend linearly on pollutant concentration at an inlet styrene concentration of <0.10 g m(-3) in the gaseous stream; achieve a maximum value (7. 10(7) colony forming units per gram of packing material) within a wide styrene concentration range (0.10 to 1.0 g m(-3)); and fall sharply beyond this inhibition threshold. The process followed zeroth-order macrokinetics with respect to styrene concentration, which is consistent with zeroth-order microkinetics with either fully active or not fully active biofilm. The maximal volumetric styrene removal rate was found to be 63 g m(packing material) (-3) h(-1) for an influent pollutant concentration of 0.80 g m(-3) and a superficial gas velocity of 245 m h(-1).  相似文献   

12.
Enrichment of fungi and degradation of styrene in biofilters   总被引:7,自引:0,他引:7  
Summary Experiments were set up in order to enrich styrene-degrading fungi in biofilters under conditions representative for industrial off-gas treatment. From the support materials tested, polyurethane and perlite proved to be most suitable for enrichment of styrene-degrading fungi. The biofilter with perlite completely degraded styrene when amounts ranging between 290 and 675 mg/m in the influent gas were present. An elimination capacity of at least 70 g styrene per m3 filter bed per hour was calculated.  相似文献   

13.
Pseudomonas sp. SR-5 was isolated as a styrene-degrading bacterium. In liquid culture containing 1% (v/v) styrene, more than 90% styrene was degraded in 53 h and the doubling time of SR-5 was 2 h. The removal of styrene gas was investigated in biofilters for 31 days using an organic packing material of peat and an inorganic packing material of ceramic inoculated with SR-5. The maximum-styrene-elimination capacities for peat and ceramic packing materials were 236 and 81 g m–3 h–1, respectively. The percentage of styrene converted to low molecular weight compounds including CO2 in the peat and ceramic biofilters during a 10-day operation were estimated to be 90.4 and 36.7%, respectively. As the pressure drop in the peat bioflter at the end of experiment was significantly higher than that in ceramic biofilter, a biofilter using a mixture of peat and ceramic was tested. We determined that the maximum elimination capacity was 170 g m–3 h–1 and the production of low molecular weight compounds was 95% at a low pressure drop for this mixed packing material filter.  相似文献   

14.
The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1650 mg . m(-3), or the superficial gas flow rate, from 30 to 460 m(3) . m(-2) . h(-1). The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg . m(-3) . h(-1). The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg . m(-3) and superficial gas flow rates ranging from 30 to 92 m(3) . m(-2) . h(-1). The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg . m(-3), operating at a superficial gas flow rate of 30 m(3) . m(-2) . h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Survival and nitrogenase efficiency ofNostoc commune andN. austinii were evaluated monthly in four carrier materials (sugarcane bagasse, wheat straw, wheat bran and peat) at 10, 30 and 40 °C. Survival, as well as nitrogenase activity, of both species was much better in peat, followed by wheat bran, sugarcane bagasse than in wheat straw at 10 and 30 °C up to three months, the activity ofN. commune being better thanN. austinii. None of the materials tested was found to be superior to peat as carrier ofNostoc species but the results indicated that wheat bran and sugarcane bagasse can be used as inoculant carriers with relative success. Storage of inoculants in these carriers is feasible at 30 °C up to three months.  相似文献   

16.
Two indigenous rhizobial strains (SB-1 and JJS-1) infectingSesbania bispinosa survived at room temperature (32±2°C) up to 90 days in filtermud (the best system), peat, charcoal, sugarcane bagasse and sawdust (the poorest system). Viable counts remained more than 108/g up to 75 days in filtermud, peat and charcoal.  相似文献   

17.
The removal of volatile organic compounds (VOC) in biofilters packed with organic filter beds, such as peat moss (PM) and pine sawdust (PS), frequently presents drawbacks associated to the collapse of internal structures affecting the long-term operation. Poly(ethylene ether carbonate) (PEEC) groups grafted to these organic carriers cross linked with 4,4'-methylenebis(phenylisocyanate) (MDI) permitted fiber aggregation into specific shapes and with excellent hexane sorption performance. Modified peat moss (IPM) showed very favorable characteristics for rapid microbial development. Water-holding capacity in addition to hexane adsorption almost equal to the dry samples was obtained. Pilot scale hexane biofiltration experiments were performed with the composites after inoculation with the filamentous fungus Fusarium solani. During the operation of the biofilter under non-aseptic conditions, the addition of bacterial antibiotics did not have a relevant effect on hexane removal, confirming the role of fungi in the uptake of hexane and that bacterial growth was intrinsically limited by an adequate performance of the composites. IPM biofilter had a start-up period of 8-13 days with concurrent CO(2) production of approximately 90 g m(-3) h(-1) at day 11. The final pressure drop after 70 days of operation was 5.3 mmH(2)O m(-1) reactor. For modified pine sawdust (IPS) packed biofilter, 5 days were required to develop an EC of about 100 g m(-3) h(-1) with an inlet hexane load of approximately 190 g m(-3) h(-1). Under similar conditions, 12-17 days were required to observe a significant start-up in the reference perlite biofilter to reach gradually an EC of approximately 100 g m(-3) h(-1) at day 32. Under typical biofiltration conditions, the physical-chemical properties of the modified supports maintained a minimum water activity (a(w)) of 0.925 and a pH between 4 and 5.5, which allowed the preferential fungal development and limited bacterial growth.  相似文献   

18.
In this study, sugarcane bagasse was pretreated by six ionic liquids (ILs) using a bagasse/IL ratio of 1:20 (wt%). The solubilization of bagasse in the ILs was followed by water precipitation. On using 1-ethyl-3-methylimidazolium acetate [Emim] [Ac] at 120 °C for 120 min, 20.7% of the bagasse components remained dissolved and enzymatic saccharification experiments resulted on 80% glucose yield within 6h, which evolved to over 90% within 24 h. Moreover, FE-SEM analysis of the precipitated material indicated a drastic lignin extraction and the exposure of nanoscopic cellulose microfibrils with widths of less than 100 nm. The specific surface area (SSA) of the pretreated bagasse (131.84 m2/g) was found to be 100 times that of untreated bagasse. The ability of [Emim] [Ac] to simultaneously increase the SSA and to decrease the biomass crystallinity is responsible for the improved bagasse enzymatic saccharification rates and yields obtained in this work.  相似文献   

19.
Removal of hexane from air–hexane mixtures in biofilters packed with different solid media under nitrogen supplementation was performed for 70 days. Two columns containing Perlite or a mixture of peat and Perlite, were used. The solid media were supplemented with nitrogen source up to 1 kg/m3 per week for high nutrient supplementation and 0.2 kg/m3 per month for low nutrient supplementation. A high rate of hexane removal: 95 g/m3 h was achieved under high nutrient supplementation, high air flow rate and high hexane concentration. However, the percentage of hexane removal decreased with increasing air flow rate and hexane inlet concentration. For high nutrient supplementation the type of solid medium did not significantly affect the biodegradation capacity. With low nutrient supplementation, the highest removal rate was achieved in the column containing the peat–perlite mixture. The column containing perlite had a significantly lower pressure drop (20 Pa/m) than the 2400–2930 Pa/m observed for the column containing the mixture. Perlite offers an opportunity of running a biofiltration process at a lower and stable pressure drop if the nutrient supplementation is managed properly.  相似文献   

20.
Abstract

In Brazil, sugarcane biomass is generated in large amounts. Sugarcane bagasse and straw are considered as an important feedstock for renewable energy and biorefinery. This paper aims to study the generation of monosaccharides (C5 and C6) from sugarcane biomass via processing bagasse or straw and mixtures of both materials (bagasse:straw 3:1, 1:1 and 1:3). Samples were pretreated with sulfuric acid which resulted in approximately 90% of hemicellulose solubilization, corresponding to around 58 g L? 1 of xylose. Pretreated straw showed greater susceptibility to enzymatic hydrolysis in comparison to bagasse, as shown by glucose yields of 76% and 65%, respectively, whereas the mixtures showed intermediate yields. Thus, one strategy to balance sugarcane biomass availability and possibly increasing 2G ethanol production would be to use bagasse–straw mixtures in appropriate ratios according to market fluctuations. Untreated and pretreated samples were analyzed using X-ray diffraction, but there was no relationship to enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号