首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human monocytes and macrophages are persistent reservoirs of human immunodeficiency virus (HIV) type-1. Persistent HIV infection of these cells results in increased levels of NF-kappaB in the nucleus secondary to increased IkappaBalpha, IkappaBbeta, and IkappaBepsilon degradation, a mechanism postulated to regulate viral persistence. To characterize the molecular mechanisms regulating HIV-mediated degradation of IkappaB, we have sought to identify the regulatory domains of IkappaBalpha targeted by HIV infection. Using monocytic cells stably expressing different transdominant molecules of IkappaBalpha, we determined that persistent HIV infection of these cells targets the NH2 but not the COOH terminus of IkappaBalpha. Further analysis demonstrated that phosphorylation at S32 and S36 is necessary for HIV-dependent IkappaBalpha degradation and NF-kappaB activation. Of the putative N-terminal IkappaBalpha kinases, we demonstrated that the Ikappakappa complex, but not p90(rsk), is activated by HIV infection and mediates HIV-dependent NF-kappaB activation. Analysis of viral replication in cells that constitutively express IkappaBalpha negative transdominant molecules demonstrated a lack of correlation between virus-induced NF-kappaB (p65/p50) nuclear translocation and degree of viral persistence in human monocytes.  相似文献   

2.
3.
4.
5.
6.
Productive human immunodeficiency virus type 1 (HIV-1) infection causes sustained NF-kappaB DNA-binding activity in chronically infected monocytic cells. A direct temporal correlation exists between HIV infection and the appearance of NF-kappaB DNA-binding activity in myelomonoblastic PLB-985 cells. To examine the molecular basis of constitutive NF-kappaB DNA-binding activity in HIV1 -infected cells, we analyzed the phosphorylation and turnover of IkappaBalpha protein, the activity of the double-stranded RNA-dependent protein kinase (PKR) and the intracellular levels of NF-kappaB subunits in the PLB-985 and U937 myeloid cell models. HIV-1 infection resulted in constitutive, low-level expression of type 1 interferon (IFN) at the mRNA level. Constitutive PKR activity was also detected in HIV-1-infected cells as a result of low-level IFN production, since the addition of anti-IFN-alpha/beta antibody to the cells decreased PKR expression. Furthermore, the analysis of IkappaBalpha turnover demonstrated an increased degradation of IkappaBalpha in HIV-1-infected cells that may account for the constitutive DNA binding activity. A dramatic increase in the intracellular levels of NF-kappaB subunits c-Rel and NF-kappaB2 p100 and a moderate increase in NF-kappaB2 p52 and RelA(p65) were detected in HIV-1-infected cells, whereas NF-kappaB1 p105/p50 levels were not altered relative to the levels in uninfected cells. We suggest that HIV-1 infection of myeloid cells induces IFN production and PKR activity, which in turn contribute to enhanced IkappaBalpha phosphorylation and subsequent degradation. Nuclear translocation of NF-kappaB subunits may ultimately increase the intracellular pool of NF-kappaB/IkappaBalpha by an autoregulatory mechanism. Enhanced turnover of IkappaBalpha and the accumulation of NF-kappaB/Rel proteins may contribute to the chronically activated state of HIV-1-infected cells.  相似文献   

7.
8.
9.
10.
11.
12.
Because the role of nuclear factor kappaB (NF-kappaB) is in cellular growth control and neoplasia, we explored the status of NF-kappaB and investigated its role in survival of human HPV-18 E6-positive HEp-2 cells. We observed accumulation of p65 in the nucleus. Moreover, without any external stimulus constitutive NF-kappaB DNA binding and transactivation activity were detected in HEp-2 cells. Treatment with NF-kappaB inhibitor curcumin (diferuloylmethane) and transient transfection of the mutant form of IkappaBalpha, IkappaBalpha super repressor (IkappaBalpha-SR), suppressed constitutive NF-kappaB activity as well as proliferation, suggesting that constitutive NF-kappaB activity is required for the survival of HEp-2 cells. Carboplatin treatment downregulated constitutive NF-kappaB activity and prevented nuclear retention of p65. Further, carboplatin also suppressed the constitutive IkappaBalpha phosphorylation leading to stabilization of IkappaBalpha protein in the cells. Carboplatin inhibited NF-kappaB binding to its response element present in Bcl-2 promoter resulting in downregulation of antiapoptotic Bcl-2 protein. Thus, our results for the first time indicate that constitutive NF-kappaB has a significant role in the survival of HPV-18 E6-positive HEp-2 cells. Moreover, inactivation of NF-kappaB is one of the mechanisms underlying the induction of carboplatin-mediated apoptosis in HPV-18 E6-positive cancer cells.  相似文献   

13.
Constitutive NF-kappaB activity has emerged as an important cell survival component of physiological and pathological processes, including B-cell development. In B cells, constitutive NF-kappaB activity includes p50/c-Rel and p52/RelB heterodimers, both of which are critical for proper B-cell development. We previously reported that WEHI-231 B cells maintain constitutive p50/c-Rel activity via selective degradation of IkappaBalpha that is mediated by a proteasome inhibitor-resistant, now termed PIR, pathway. Here, we examined the mechanisms of PIR degradation by comparing it to the canonical pathway that involves IkappaB kinase-dependent phosphorylation and beta-TrCP-dependent ubiquitylation of the N-terminal signal response domain of IkappaBalpha. We found a distinct consensus sequence within this domain of IkappaBalpha for PIR degradation. Chimeric analyses of IkappaBalpha and IkappaBbeta further revealed that the ankyrin repeats of IkappaBalpha, but not IkappaBbeta, contained information necessary for PIR degradation, thereby explaining IkappaBalpha selectivity for the PIR pathway. Moreover, we found that PIR degradation of IkappaBalpha and constitutive p50/c-Rel activity in primary murine B cells were maintained in a manner different from B-cell-activating-factor-dependent p52/RelB regulation. Thus, our findings suggest that nonconventional PIR degradation of IkappaBalpha may play a physiological role in the development of B cells in vivo.  相似文献   

14.
Repetitive exposure of macrophages to microbial antigen is known to tolerize them to further stimulation and to inhibit proinflammatory cytokine release. Using transgenic (Tg) mice that incorporate the entire HIV-1 genome we have previously shown that toll like receptor (TLR)-2, -4, and -9 ligands induced tolerance as assessed by decreased proinflammatory cytokine secretion and nuclear factor-kappa beta activation. Yet, despite cytokine modulation, HIV-1 p24 production was enhanced in tolerized cells in vitro and in vivo. Since mice are not natural hosts for HIV infection, in the following report we examined whether TLR2 and TLR4 ligands induced tolerance in human monocytic cell lines stably expressing the HIV-long terminal repeat (LTR) luciferase construct (THP-LTR-Luc) as well as in primary macrophages that had been infected with HIV(BAL)in vitro. In THP-LTR-luc, TLR2 and TLR4 tolerization suppressed tumor necrosis factor (TNF)-alpha release and HIV-LTR transactivation. In HIV(BAL) infected macrophages, repeated LPS exposure inhibited HIV replication as assessed by decreased genetic expression and protein production of HIV-1 p24, although TNF-alpha release was not inhibited. These observations may have important clinical implications in understanding the role of macrophages as HIV reservoirs at anatomical sites where there is repeated exposure to microbial antigens.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号