首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used bovine intestinal organ culture to study infection by enterohemorrhagic Escherichia coli serogroups O157, O26, and O111. We show colonization and attaching and effacing lesion formation on explants derived from the ileum, colon, and rectum. Intimin and Tir were detected at the sites of adherent bacteria; Tir was essential for colonization.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections cause serious public health problems worldwide. The translocation intimin receptor (Tir) is responsible for adhesion and attaching and effacing lesions. In the current study, we used a mitomycin-treated mouse model to evaluate the efficacy of subcutaneous vs intranasal administration of the recombinant Tir as vaccine. Following immunization, mice were infected with E. coli O157:H7 and faces were monitored for shedding. Mice immunized intrasally with purified Tir proteins produced higher IgG and IgA titers in serum and feces, resulting in significant reductions in fecal shedding of EHEC O157 and higher a survival rate (92.9%), compared with subcutaneous or control immunizations. These results demonstrate the potential for the use of Tir proteins in mucosal vaccine formulations to prevent colonization and shedding of E. coli O157:H7. Therefore, purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate.  相似文献   

3.
Enterohemorrhagic Escherichia coli (EHEC) are important human pathogens, causing hemorrhagic colitis and hemolytic uraemic syndrome in humans. E. coli O157:H7 is the most common serotype associated with EHEC infections worldwide, although other non-O157 serotypes cause life-threatening infections. Cattle are a main reservoir of EHEC and intervention strategies aimed at limiting EHEC excretion from cattle are predicted to lower the risk of human infection. We have previously shown that immunization of calves with recombinant versions of the type III secretion system (T3SS)-associated proteins EspA, intimin and Tir from EHEC O157:H7 significantly reduced shedding of EHEC O157 from experimentally-colonized calves, and that protection could be augmented by the addition of H7 flagellin to the vaccine formulation. The main aim of the present study was to optimize our current EHEC O157 subunit vaccine formulations by identifying the key combinations of these antigens required for protection. A secondary aim was to determine if vaccine-induced antibody responses exhibited cross-reactive potential with antigens from other EHEC serotypes. Immunization with EspA, intimin and Tir resulted in a reduction in mean EHEC O157 shedding following challenge, but not the mean proportion of calves colonized. Removal of Tir resulted in more prolonged shedding compared with all other groups, whereas replacement of Tir with H7 flagellin resulted in the highest levels of protection, both in terms of reducing both mean EHEC O157 shedding and the proportion of colonized calves. Immunization of calves with recombinant EHEC O157 EspA, intimin and Tir resulted in the generation of antibodies capable of cross-reacting with antigens from non-O157 EHEC serotypes, suggesting that immunization with these antigens may provide a degree of cross-protection against other EHEC serotypes. Further studies are now required to test the efficacy of these vaccines in the field, and to formally test the cross-protective potential of the vaccines against other non-O157 EHEC.  相似文献   

4.
Tir, the translocated intimin receptor of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) and Citrobacter rodentium, is translocated into the host cell by a filamentous type III secretion system. Epithelial cell culture has demonstrated that Tir tyrosine phosphorylation is necessary for attaching effacing (A/E) lesion formation by EPEC and C. rodentium, but is not required by EHEC O157:H7. Recent in vivo work on C. rodentium has reported that Tir translocation, but not its phosphorylation, is necessary for colonization of the mouse colon. In this study we investigated the involvement of Tir and its tyrosine phosphorylation in EPEC and EHEC human intestinal colonization, N-WASP accumulation and F-actin recruitment using in vitro organ culture (IVOC). We showed that both EPEC and EHEC Tir are translocated into human intestinal epithelium during IVOC and that Tir is necessary for ex vivo intestinal colonization by both EPEC and EHEC. EPEC, but not EHEC, Tir is tyrosine phosphorylated but Tir phosphorylation-deficient mutants still colonize intestinal explants. While EPEC Tir recruits the host adaptor protein Nck to initiate N-WASP-Arp2/3-mediated actin polymerization, Tir derivatives deficient in tyrosine phosphorylation recruit N-WASP independently of Nck indicating the presence of a tyrosine phosphorylation-independent mechanism of A/E lesion formation and actin recruitment ex vivo by EPEC in man.  相似文献   

5.
The type III secreted protein Tir from Enterohemorrhagic Escherichia coli (EHEC O157:H7) plays a central role in adherence and pedestal formation during infection. Little is known about how Tir domains outside of the amino-terminus contribute to efficient Tir secretion and translocation. We found a 6 amino acid (519-524) carboxy-terminal region which was required for efficient Tir secretion and translocation. Interestingly, EHEC O157:H7 Tir(Delta)519-524 was efficiently secreted when expressed in the related pathogen enteropathogenic E. coli. These data suggest that this region may play a role in maintaining EHEC O157:H7 Tir in a secretion-competent conformation.  相似文献   

6.
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 induces filamentous actin-rich 'pedestals' on intestinal epithelial cells. Pedestal formation in vitro requires translocation of bacterial effectors into the host cell, including Tir, an EHEC receptor, and EspFU, which increases the efficiency of actin assembly initiated by Tir. While inactivation of espF U does not alter colonization in two reservoir hosts, we utilized two disease models to explore the significance of EspFU-promoted actin pedestal formation. EHECΔ espF U efficiently colonized the rabbit intestine during co-infection with wild-type EHEC, but co-infection studies on cultured cells suggested that EspFU produced by wild-type bacteria might have rescued the mutant. Significantly, EHECΔ espF U by itself was fully capable of establishing colonization at 2 days post inoculation but unlike wild type, failed to expand in numbers in the caecum and colon by 7 days. In the gnotobiotic piglet model, an espF U deletion mutant appeared to generate actin pedestals with lower efficiency than wild type. Furthermore, aggregates of the mutant occupied a significantly smaller area of the intestinal epithelial surface than those of the wild type. Together, these findings suggest that, after initial EHEC colonization of the intestinal surface, EspFU may stabilize bacterial association with the epithelial cytoskeleton and promote expansion beyond initial sites of infection.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) is a significant zoonotic pathogen causing severe disease associated with watery and bloody diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome (HUS) in humans. Infections are frequently associated with contact with EHEC-contaminated ruminant feces. Both natural and experimental infection of cattle induces serum antibodies against the LEE-encoded proteins intimin, EspA, EspB, and Tir and the Shiga toxins Stx1 and Stx2, although the latter are poorly immunogenic in cattle. We determined whether antibodies and/or the kinetics of antibody responses against intimin, Tir, EspA, and/or EspB can be used for monitoring EHEC infections in beef cattle herds in order to reduce carcass contamination at slaughter. We examined the presence of serum antibodies against recombinant O157:H7 E. coli intimin EspA, EspB, and Tir during a cross-sectional study on 12 cattle farms and during a longitudinal time course study on two EHEC-positive cattle farms. We searched for a possible correlation between intimin, Tir, EspA, and/or EspB antibodies and fecal excretion of EHEC O157, O145, O111, O103, or O26 seropathotypes. The results indicated that serum antibody responses to EspB and EspA might be useful for first-line screening at the herd level for EHEC O157, O26, and most likely also for EHEC O103 infections. However, antibody responses against EspB are of less use for monitoring individual animals, since some EHEC-shedding animals did not show antibody responses and since serum antibody responses against EspB could persist for several months even when shedding had ceased.  相似文献   

8.
9.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

10.
A major virulence determinant of enteropathogenic Escherichia coli (EPEC) is the Tir molecule that is translocated into the plasma membrane where it orchestrates cytoskeletal rearrangements. Tir undergoes several phosphorylation events within host cells, with modification on a tyrosine essential for its actin-nucleating function. The EHEC (serotype O157:H7) Tir homologue is not tyrosine phosphorylated implying that it uses an alternative mechanism to nucleate actin. This is supported in this study by the demonstration that EHEC Tir is unable to functionally substitute for its EPEC homologue. Like EPEC, the EHEC Tir molecule is phosphorylated within host cells, with the actin-nucleating dysfunction correlated to an altered modification profile. In contrast to EHEC Tir, the EPEC Tir molecule mediated actin nucleation whether delivered into host cells by either strain. Thus, it would appear that EHEC encodes specific factor(s) that facilitate the correct modification of its Tir molecule within host cells. Domain-swapping experiments revealed that the N-terminal, α-actinin binding, Tir domains were functionally interchangeable, with both the actin-nucleating dysfunction and altered modification profiles linked to the EHEC C-terminal Tir domain. This tyrosine-independent modification process presumably confers an advantage to EHEC O157:H7 and may contribute to the prevalence of this strain in EHEC disease. The presented data are also consistent with EPEC and EHEC sharing non-phosphotyrosine phosphorylation event(s), with an important role for such modifications in Tir function. An EHEC-induced phosphotyrosine dephosphorylation activity is also identified.  相似文献   

11.
Citrobacter rodentium infection of mice serves as a relevant small animal model to study enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) infections in man. Enteropathogenic E. coli and EHEC translocate Tir into the host cytoplasmic membrane, where it serves as the receptor for the bacterial adhesin intimin and plays a central role in actin condensation beneath the adherent bacterium. In this report, we examined the function of C. rodentium Tir both in vitro and in vivo. Similar to EPEC, C. rodentium Tir is tyrosine phosphorylated and is essential for actin condensation. Citrobacter Tir and EPEC Tir are functionally interchangeable and both require tyrosine phosphorylation to mediate actin rearrangements. In contrast, Citrobacter Tir supports actin nucleation in EHEC independent of tyrosine phosphorylation, while EHEC Tir cannot replace Citrobacter Tir for this function. This indicates that C. rodentium and EPEC use an actin nucleating mechanism different from EHEC. We also found that Tir is expressed and translocated into mouse enterocytes in vivo by C. rodentium during infections. This represents the first direct demonstration of a type III effector translocated in vivo into a natural host by any pathogen. In addition, we showed that Tir, but not its tyrosine phosphorylation, is essential for C. rodentium to colonize the large bowel and induce attaching/effacing (A/E) lesions and colonic hyperplasia in mice, and that both EPEC Tir and EHEC Tir can substitute for Citrobacter Tir for these activities in vivo. These results thus demonstrate that Tir is an essential virulence factor in this infection model. The data also show that the function of Tir tyrosine phosphorylation and its subsequent actin nucleating activity are not essential for C. rodentium colonization of the mouse gut nor for inducing A/E lesions and colonic hyperplasia, thereby uncoupling colonization and disease from actin condensation for this A/E pathogen.  相似文献   

12.
Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening complications. Because healthy cattle are reservoirs for the bacterium, ruminant infection models have applications in analyzing the relationship between cattle and this human pathogen and in testing interventions to reduce or prevent bovine colonization with this bacterium. Current approaches often do not reliably mimic natural, long-term bovine colonization with E. coli O157:H7 in older calves and adult animals (ages that enter our food chain). Based on the recent identification of the bovine rectoanal junction mucosa as a site of E. coli O157:H7 colonization, we developed a novel rectal swab administration colonization model. We compared this method with oral dosing and direct contact transmission (Trojan) methods. E. coli O157:H7 carriage status was determined by fecal or rectoanal mucosa swab culture. High (~1010 CFU) and low (~107 CFU) oral doses of E. coli O157:H7 in sheep and cattle resulted in variable infection with the bacterium. Some animals became colonized with the bacteria and remained culture positive for several weeks, and some animals did not become colonized and rapidly cleared the bacteria in a few days. Pen mates of E. coli O157:H7 culture-positive Trojan cattle had a low infection rate and variable colonization status. However, rectal swab administration of E. coli O157:H7 to cattle resulted in consistent long-term colonization in all animals. The surprising ease with which long-term infections resulted from a single application of bacteria to the rectoanal mucosa also strongly supported this location as a site of E. coli O157:H7 colonization in cattle.  相似文献   

13.
Chloroplast genetic engineering offers an opportunity for high level expression and cost-effective recombinant protein production. Escherichia coli O157:H7 is one of the most important zoonotic pathogens causing hemorrhagic colitis (HC) and the life-threatening hemolytic-uremic syndrome in humans worldwide. The occurrence of zoonotic E. coli O157:H7 outbreaks in recent years has led to increased efforts in the development of safe and cost-effective immunogenic antigens against E. coli O157:H7. EspA and Tir/Intimin proteins are the important virulence factors which are encoded by the LEE locus of enterohemorrhagic E. coli. In this study, we hypothesized that the high level expression of the chimeric form of these effectors in chloroplasts and using tobacco transplastomic plants as an oral delivery system for the development of an edible-base vaccine would induce an immune response for the prevention of E. coli 0157:H7 attachment and colonization in animal model mice. The prokaryotic codon-optimized EIT protein was expressed in plastid genome via chloroplast transformation. Putative transplastomic plants were analyzed by PCR, and Southern blot analysis confirming chloroplast integration and homoplasmy in the T1 progeny. Immunoblotting and ELISA assays demonstrated that the EIT protein was expressed in chloroplasts and accumulated up to 1.4 % of total soluble protein in leaf tissue. In mice orally immunized with transplastomic tobacco plant leaves, high immunological responses (IgG and IgA specific antibodies) were detected in serum and feces. Finally, the challenging assay with E. coli O157:H7 in immunized mice showed reduced bacterial shedding.  相似文献   

14.
Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-induced pathologies in challenged cattle has suggested that previously discounted bacterial virulence factors may contribute to the colonization of cattle. The objective of the present study was to examine the impact of lineage type, cytotoxin activity, and cytotoxin expression on the amount of E. coli O157:H7 colonization of cattle tissue and cells in vitro. Using selected bovine- and human-origin strains, we determined that lineage type predicted the amount of E. coli O157:H7 strain colonization: lineage I > intermediate lineages > lineage II. All E. coli O157:H7 strain colonization was dose dependent, with threshold colonization at 103 to 105 CFU and maximum colonization at 107 CFU. We also determined that an as-yet-unknown factor of strain origin was the most dominant predictor of the amount of strain colonization in vitro. The amount of E. coli O157:H7 colonization was also influenced by strain cytotoxin activity and the inclusion of cytotoxins from lineage I or intermediate lineage strains increased colonization of a lineage II strain. There was a higher level of expression of the Shiga toxin 1 gene (stx1) in human-origin strains than in bovine-origin strains. In addition, lineage I strains expressed higher levels of the Shiga toxin 2 gene (stx2). The present study supports a role for strain origin, lineage type, cytotoxin activity, and stx2 expression in modulating the amount of E. coli O157:H7 colonization of cattle.Enterohemorrhagic Escherichia coli O157:H7 is a bacterium that causes serious human disease outbreaks through the consumption of contaminated food or water (39). Mature cattle are considered the primary reservoir for E. coli O157:H7 and historically were reported to have no symptoms or pathologies (17, 23, 38); this was attributed both to a lack of receptors for a critical E. coli O157:H7 virulence factor, Shiga toxin 1 (Stx1 [29]), and to a differential expression of type III protein secretion system effector molecules such as EspA, EspD, and Iha (25, 30) in cattle compared to humans. In 2008, it was established for the first time that E. coli O157:H7 causes mild to severe intestinal pathology in persistent shedding cattle (5, 26) and that the secreted cytotoxins enhanced E. coli O157:H7 colonization of intestinal tissues of cattle (6). This suggested that cattle were susceptible to E. coli O157:H7 infection and that previously discounted virulence factors could influence the amount of colonization in cattle.Three distinct E. coli O157:H7 lineages have been identified based on the lineage specific polymorphism assay (LSPA-6) that suggests both the evolutionary history of the strain and their propensity to be present among animals, the environment, and clinical human isolates (21, 22, 24, 33, 40, 42). Typically, two predominant lineages have been described, lineages I and II (22, 40) and, more recently, intermediate lineages that have characteristics of lineage I and/or II have been reported at higher frequency among cattle (34). Although all E. coli O157:H7 lineages have been isolated from feedlot cattle, the predominant recovery of lineage I from clinical human illnesses suggests that this particular lineage type has unique expression patterns that may contribute to its preferential colonization of humans. There is some evidence to suggest that lineage I strains do not express certain virulence factors in bovine hosts, whereas other factors such as cytotoxins are expressed equally irrespective of host (30). One virulence factor associated with all lineages is the bacterium''s ability to form intimate attaching-and-effacing lesions or colonization sites in the ilea of susceptible animals (28). The amount of colonization is enhanced by the expression of Shiga toxin 2 (Stx2) through both an increase in the expression of alternative non-TIR (translocated intimin receptor) colonization sites (31) and toxicity to the absorptive epithelial cells (32). In cattle, attaching-and-effacing lesions are also formed (5), and Stx2 increases colonization but is not cytotoxic to epithelial cells from the jejuna and descending colons of cattle (4). Differential expression of stx2 among E. coli O157:H7 lineages is also linked to the increased pathogenicity of lineage I strains in humans (25), and this may affect cattle similarly. Together, this information suggests that at least some similar virulence factors affecting E. coli O157:H7 colonization in humans also function in cattle.In order to gain a better understanding of the factors modulating E. coli O157:H7 colonization in cattle, we compared the ability of lineage I, lineage II, and intermediate lineages isolated from human sources to colonize the jejunum tissue and a colonic cell line from cattle. We hypothesized that the bovine colonic cell line could be used as a model system to reflect E. coli O157:H7 colonization of tissue. To confirm the value of this model, the role of strain origin in colonization of cattle was examined. In order to understand the differences in colonization associated with lineage and strain origins, we assessed cytotoxin expression, secreted cytotoxin activity, and cytotoxin-induced changes in E. coli O157:H7 colonization. Given the known lack of Stx1 activity in cattle, we examined the effects of LSPA-6 genotype, strain origin (human versus bovine), and cytotoxin activity on E. coli O157:H7 colonization of cattle.  相似文献   

15.
Yi Y  Ma Y  Gao F  Mao X  Peng H  Feng Y  Fan Z  Wang G  Guo G  Yan J  Zeng H  Zou Q  Gao GF 《PloS one》2010,5(12):e15285
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at 2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7.  相似文献   

16.
A renewed interest in Shiga toxin-producing Escherichia coli (STEC) strains was sparked due to the appearance of an outbreak in 2011, causing 3,816 diarrheal cases and some deaths in Europe. The causative strain was classified as enteroaggregative E. coli of serotype O104:H4 that had acquired Shiga toxin genes. The ability of STEC O104:H4 to cause disease relies greatly on the bacteria’s capacity to colonize, persist, and produce Shiga toxin. However, not much is known about the colonization factors of this strain. Because long polar fimbriae (lpf) lpf1 and lpf2 operons encode important colonization factors in other STEC isolates and E. coli O104:H4 possesses both loci, we hypothesized that Lpf is required for adhesion and colonization. In this study, isogenic lpfA1 and lpfA2 major fimbrial subunit mutants were constructed. To determine their role in O104:H4’s virulence, we assessed their ability to adhere to non-polarized and polarized intestinal epithelial cells. The ΔlpfA1 showed decreased adherence in both cell systems, while the ΔlpfA2 only showed a decrease in adherence to polarized Caco-2 cells. We also tested the O104:H4 mutants’ ability to form biofilm and found that the ΔlpfA1 was unable to form a stable biofilm. In an in vivo murine model of intestinal colonization, the ΔlpfA1 had a reduced ability to colonize the cecum and large intestine, consistent with the in vitro data. Further, we tested the lpfA1 mutants’ ability to compete against the wild type. We found that in the in vitro and in vivo models, the presence of the wild type O104:H4 facilitates increased adherence of the ΔlpfA1 to levels exceeding that of the wild type. Overall, our data demonstrated that Lpf1 is one of the factors responsible for O104:H4 intestinal adhesion and colonization.  相似文献   

17.
The association of Vibrio cholerae with zooplankton has been suggested as an important factor in transmission of human epidemic cholera, and the ability to colonize zooplankton surfaces may play a role in the temporal variation and predominance of the two different serogroups (V. cholerae O1 El Tor and O139) in the aquatic environment. To date, interactions between specific serogroups and species of plankton remain poorly understood. Laboratory microcosm experiments were carried out to compare quantitatively the colonization of two copepod species, Acartia tonsa and Eurytemora affinis, by each of the epidemic serogroups. V. cholerae O1 consistently achieved higher abundances than V. cholerae O139 in colonizing adults of each copepod species as well as the multiple life stages of E. affinis. This difference in colonization may be significant in the general predominance of V. cholerae O1 in cholera epidemics in rural Bangladesh where water supplies are taken directly from the environment.  相似文献   

18.
The outer membrane adhesins of enteropathogenic Escherichia coli, Citrobacter rodentium, and enterohemorrhagic E. coli (EHEC) O157:H7 that mediate attach and efface intestinal lesions are classified as intimin alpha, beta, and gamma, respectively. Each of these intimin types binds to its cognate, bacterially encoded receptor (called Tir for translocated intimin receptor) to promote tight adherence of the organism to the host-cell plasma membrane. We previously reported that gamma intimin of EHEC O157:H7 also bound to a eucaryotic receptor that we determined was nucleolin. The objective of this study was to investigate in vitro and in vivo the interactions of intimins alpha, beta, and gamma with nucleolin in the presence of Tir from EHEC O157:H7. Protein binding experiments demonstrated that intimin of types alpha, beta, and gamma bound nucleolin with similar affinity. Moreover, all three intimin types co-localized with regions of nucleolin expressed on the surface of HEp-2 cells. When intimin alpha, beta, or gamma bound to Tir in vitro, the intimin interaction with nucleolin was blocked. Both Tir and nucleolin accumulated beneath intimin-presenting bacteria that had attached to the surface of HEp-2 cells. Taken together, these findings suggest that nucleolin is involved in bacterial adherence promoted by all intimin types and that Tir and nucleolin compete for intimin during adherence.  相似文献   

19.
Upon infection of mammalian cells, enterohemorrhagic E. coli (EHEC) O157:H7 utilizes a type III secretion system to translocate the effectors Tir and EspFU (aka TccP) that trigger the formation of F-actin-rich ‘pedestals’ beneath bound bacteria. EspFU is localized to the plasma membrane by Tir and binds the nucleation-promoting factor N-WASP, which in turn activates the Arp2/3 actin assembly complex. Although N-WASP has been shown to be required for EHEC pedestal formation, the precise steps in the process that it influences have not been determined. We found that N-WASP and actin assembly promote EHEC-mediated translocation of Tir and EspFU into mammalian host cells. When we utilized the related pathogen enteropathogenic E. coli to enhance type III translocation of EHEC Tir and EspFU, we found surprisingly that actin pedestals were generated on N-WASP-deficient cells. Similar to pedestal formation on wild type cells, Tir and EspFU were the only bacterial effectors required for pedestal formation, and the EspFU sequences required to interact with N-WASP were found to also be essential to stimulate this alternate actin assembly pathway. In the absence of N-WASP, the Arp2/3 complex was both recruited to sites of bacterial attachment and required for actin assembly. Our results indicate that actin assembly facilitates type III translocation, and reveal that EspFU, presumably by recruiting an alternate host factor that can signal to the Arp2/3 complex, exhibits remarkable versatility in its strategies for stimulating actin polymerization.  相似文献   

20.
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号