首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

2.
Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.  相似文献   

3.
Allozymic variation in proteins encoded by 22 loci was analyzed electrophoretically in 278 individual plants of wild barley,Hordeum spontaneum, the progenitor of cultivated barley, in four 100 meter transects, in Israel, each equally subdivided into basalt and terra rossa soil types. Significant differentiation according to soil was found in 9 alleles. Our results suggest that allozyme polymorphisms in wild barley are at least partly adaptive, and differentiate by edaphic natural selection rather than by stochastic processes, and/or neutrality of allozymic variants.  相似文献   

4.
Geographic variation in protein content of wild barley,Hordeum spontaneum, and the associations of protein content with ecological and allozyme markers were tested in an attempt to derive predictive guidelines for conservation and utilization in breeding programs. The study involved 195 genotypes of wild barley from 25 populations, 15 central and 10 marginal. These populations had been tested earlier for allozymic variation (Nevo & al. 1979 a, b). The results indicate that protein content varies both within, but particularly between populations. Notably, the 10 marginal populations exhibit high protein content but low kernel weight, as compared with the 15 central populations which displayed lower protein content but high kernel weight. Three variable combinations of climatic factors explain 40% of the variability in protein content among populations. Likewise, 3 variable combinations of allozyme allele frequencies explain a significant degree of spatial variance in protein content (R square = 0.63). — We conclude that natural populations of wild barley in Israel contain large amounts of yet untapped genes for protein content. These could be effectively screened and utilized for producing high protein cultivars of barley by following ecological and allozymic markers as predictive guidelines in screening natural populations of wild barley.  相似文献   

5.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

6.
Genetic diversity and structure of populations of the wild progenitor of barleyHordeum spontaneum in Iran was studied by electrophoretically discernible allozymic variation in proteins encoded by 30 gene loci in 509 individuals representing 13 populations of wild barley. The results indicate that: a)Hordeum spontaneum in Iran is extremely rich genetically but, because of predominant self-pollination, the variation is carried primarily by different homozygotes in the population. Thus, genetic indices of polymorphismP-1% = 0.375, range = 0.267–0.500, and of genetic diversity,He = 0.134, range = 0.069–0.198, are very high. b) Genetic differentiation of populations includes clinal, regional and local patterns, sometimes displaying sharp geographic differentiation over short distances. The average relative differentiation among populations isGst = 0.28, range = 0.02–0.61. c) A substantial portion of the patterns of allozyme variation in the wild gene pool is significanctly correlated with the environment and is predictable ecologically, chiefly by combinations of temperature and humidity variables. d) The natural populations studied, on the average, are more variable than two composite crosses, and more variable than indigenous land races of cultivated barely,Hordeum vulgare, in Iran. — The spatial patterns and environmental correlates and predictors of genetic variation ofH. spontaneum in Iran indicate that genetic variation in wild barley populations is not only rich but also at least partly adaptive. Therefore, a much fuller exploitation of these genetic resources by breeding for disease resistance and economically important agronomic traits is warranted.  相似文献   

7.
A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. in situ hybridization experiments showed dispersed organization of the sequences over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good agreement with the classification system which suggests the division of the genus into four major groups, containing the genomes I, X, Y, and H. However, our investigation also supports previous molecular studies of barley species where the unique position of H. bulbosum has been pointed out. In our experiments, H. bulbosum generally had hybridization patterns different from those of H. vulgare, although both carry the I genome. Based on our results we present a hypothesis concerning the possible origin and phylogeny of the polyploid barley species H. secalinum, H. depressum and the H. brachyantherum complex.  相似文献   

8.
Genetic diversity among wild and cultivated barley as revealed by RFLP   总被引:4,自引:0,他引:4  
Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp. spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns was estimated and the barley lines clustered into five groups reflecting geographical origin. The geographical groups of land-race lines showed less intragroup variation than the geographical groups of spontaneum lines. The group of European varieties, representing large variation in agronomic traits, showed an intermediate level. The proportion of gene diversity residing among geographical groups (FST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups.  相似文献   

9.
Wild barley shows a large morphological and phenotypic variation, which is associated with ecogeographical factors and correlates with genotypic differences. Diversity of defense related genes and their expression in wild barley has been recognized and has led to attempts to exploit genes from H. spontaneum in breeding programs. The aim of this study was to determine the variation in the accumulation of hordatines, which are Hordeum-specific preformed secondary metabolites with strong and broad antimicrobial activity in vitro, in 50 accessions of H. spontaneum from different habitats in Israel. Differences in the accumulation of hordatines in the seedling stage were significant between different H. spontaneum genotypes from different regional locations and micro-sites. Variation in the hordatine accumulation within genotypes was between 9% and 45%, between genotypes from the same location between 13% and 38%, and between genotypes from different locations up to 121%. Principal component analysis showed that water related factors explain 39%, temperature related factors explain 33% and edaphic factors account for 11% of the observed variation between the populations of H. spontaneum. Genetic analysis of the tested accessions with LP-PCR primers that are specific for genes involved in the biosynthetic pathway of hordatines showed tight correlations between hordatine abundance and genetic diversity of these markers. Multiple regression analyses indicated associations between genetic diversity of genes directly involved in hordatine biosynthesis, ecogeographical factors and the accumulation of hordatines.  相似文献   

10.
To assess the genetic diversity and the genetic structure of Turkish wild barley (Hordeum spontaneum Tell.) populations, 76 genotypes from ten ecologically and geographically different locations were analyzed by means of amplified fragment length polymorphism (AFLP) markers. Five primer combinations produced 187 scorable bands, of which 117 (62.6%) were polymorphic. Several population-specific and genotype-specific bands were identified, which differentiate populations or genotypes. Genetic distance, determined by Nei’s distance coefficient, varied from 0.07 to 0.21 with an average of 0.13. In the UPGMA dendrogram based on Nei genetic distances, the Hordeum spontaneum populations were separated into two major clusters. Genetic diversity was larger among (68%) than within (32%) populations. Eight AFLP bands were strongly correlated to the altitude of the collecting site, while no clear trend was detected between geographical origin and genetic diversity. Our results strongly suggest the need for a change in Hordeum spontaneum sampling strategy: more populations, rather then more individuals within population, should be sampled to appraise and safeguard genetic diversity in the wild barley gene pool.  相似文献   

11.
We analyzed genetic diversity in the storage protein hordein encoded at Hor-1, Hor-2 and Hor-3 loci in seeds from 211 accessions of wild close relatives of barley, Hordeum vulgare ssp. agriocrithon and H. vulgare ssp. spontaneum. Altogether 32, 27 and 13 different phenotypes were found for Hor-1, Hor-2 and Hor-3, respectively. A comparison of our results with those of previous studies indicates that Tibetan samples reflect the highest diverse level of hordein phenotypes when compared to samples from Israel and Jordan. This high degree of polymorphism supports the hypothesis that Tibet is one of the original centers of H. vulgare L.Communicated by H.F. Linskens  相似文献   

12.
The cold-regulated (COR14) protein of 14 kDa is a polypeptide accumulated under low-temperature conditions in the chloroplasts of barley leaves. In H. vulgare the COR14 antibody cross-reacts with two proteins, with a slightly different relative molecular weight around the marker of 14.4 kDa, referred to as COR14a and COR14b (high and low relative molecular weight, respectively). In a collection of H. spontaneum genotypes a clear polymorphism was found for the corresponding COR proteins. While some accessions showed the same COR pattern as cultivated barley, in 38 out of 61 accessions examined the COR14 antibody cross-reacted with an additional coldregulated protein with a relative molecular weight of about 24 kDa (COR24). The accumulation of COR24 was often associated with the absence of COR14b; the relationship between the COR14b/COR24 polymorphism and the adaptation of H. spontaneum to different environments is discussed. By studying COR14 accumulation in cultivated barley we have found that the threshold induction-temperature of COR14a is associated with the loci controlling winter hardiness. This association was demonstrated by using either a set of 30 cultivars of different origin, or two sets of frost-tolerant and frost-sensitive F1 doubled-haploid lines derived from the cross Dicktoo (winter type) x Morex (spring type). These results suggest that the threshold induction-temperature of COR14a can be a potential biochemical marker for the identification of superior frostresistant barley genotypes.  相似文献   

13.
A study was made of the genetic variability of 101 barley populations belonging to the four, wild, Spanish species of the genusHordeum (the autogamousH. marinum subspp.marinum andgussoneanum, andH. murinum subspp.murinum andleporinum, plus the allogamous speciesH. bulbosum andH. secalinum). Electrophoresis of endosperm proteins was performed using a large number of individuals from each population sampled, in order to determine intra- and interpopulational variation. The distribution of variability observed by population and taxonomic unit, is closely related to the breeding system.Hordeum bulbosum showed the greatest intrapopulational variability andH. marinum subsp.gussoneanum the least. In contrast to the autogamous species, the allogamous species showed low levels of interpopulational variation.  相似文献   

14.
15.
The terminal step of soybean cysteine synthesis is catalyzed by O-acetylserine(thiol)lyase (OAS-TL, EC 2.5.1.47). In this study, we isolated and characterized an OAS-TL gene from a wild soybean material (designated as GsOAS-TL1). GsOAS-TL1 cDNA sequence showed strict conservation at both nucleotide and amino acid levels compared with that from cultivated soybean. Genomic structure analysis of GsOAS-TL1 indicated that it contained 10 exons and 9 introns in the coding region with conserved exon sizes and intron locations compared with Arabidopsis thaliana OAS-TL-like genes. Among the complete GsOAS-TL1 cDNA and three part-deletion fragments, only expression of the full-length cDNA could rescue the NK3 cys Escherichia coli auxotroph, which was coherent with the assayed enzyme activity of purified fusion proteins. For RT-PCR analysis in different wild soybean tissues, GsOAS-TL1 showed lower expression in roots and developing seeds, whereas total OAS-TL activity of corresponding tissues showed significantly higher level in seeds than other tissues. To our knowledge, this is the first report on cloning and characterization of an OAS-TL gene from wild soybean. Our results are informative to further elucidate the function and evolution of OAS-TL in soybean.  相似文献   

16.
Four bread wheat (Triticum aestivum L.) cultivars, Aobakomugi, Chinese Spring, Norin 61 and Shinchunaga, were pollinated with five barley lines/cultivars consisting of three cultivated barley (Hordeum vulgare L.) lines, Betzes, Kinai 5 and OHL089, and two wild barley (Hordeum spontaneum C. Koch) lines, OUH602 and OUH324. Crossability, expressed as the percentage of embryo formation, varied from 0 to 55.4% among the cross combinations. The two wild barley lines generally had a higher crossability than the previously reported best pollinator, Betzes, and some Japanese wheat cultivars were better as the female parent than Chinese Spring. Ninety four hybrid plants were obtained from 250 embryos cultured, and their somatic chromosome numbers ranged from 21 to 36. Eighteen plants were mosaic in chromosome number. Twenty one-chromosome plants appeared most frequently (45.7%) followed by 28-chromosome plants (14.9%). C-banding analysis revealed that elimination of barley chromosomes was mainly responsible for the occurrence of aneuploid plants. In hypoploids derived from Betzes-crosses, chromosome 5 was preferentially eliminated as previously reported, while in hypoploids derived from OUH602-crosses, chromosome 4 was preferentially eliminated. The wild barley line OUH602 may be a useful parent for producing a new wheat-barley addition set because of its high crossability with wheat and a different pattern of chromosome elimination.  相似文献   

17.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

18.
He J  Chen L  Si Y  Huang B  Ban X  Wang Y 《Genetica》2009,135(2):233-243
Magnolia officinalis subsp. biloba, a traditional Chinese medicinal plant, experienced severe declines in the number of populations and the number of individuals in the late 20th century due to the widespread harvest of the subspecies. A large-scale cultivation program was initiated and cultivated populations rapidly recovered the loss in individual plant numbers, but wild populations remained small as a consequence of cutting. In this study, the levels of genetic variation and genetic structure of seven wild populations and five domestic populations of M. officinalis subsp. biloba were estimated employing an AFLP methodology. The plant exhibited a relatively high level of intra-population genetic diversity (h = 0.208 and H j = 0.268). The cultivated populations maintained approximately 95% of the variation exhibited in wild populations, indicating a slight genetic bottleneck in the cultivated populations. The analysis of genetic differentiation revealed that most of the AFLP diversity resided within populations both for the wild group (78.22%) and the cultivated group (85.92%). Genetic differentiation among populations in the wild group was significant (F ST = 0.1092, P < 0.005), suggesting wild population level genetic structure. Principal coordinates analysis (PCO) did not discern among wild and cultivated populations, indicating that alleles from the wild population were maintained in the cultivated gene pool. Results from the present study provide important baseline data for effectively conserving the genetic resources of this medicinal subspecies.  相似文献   

19.
Summary If in vitro culture is to be used for evaluating the salt tolerance of tomato hybrids and segregant populations in a breeding programme, it is previously necessary to get quick and reliable traits. In this work, growth and physiological responses to salinity of two interspecific hybrids between the cultivated tomato (Lycopersicon esculentum Mill) and its wild salt-tolerant species L pennellii are compared to those of their parents. The leaf callus of the first subculture was grown on media amended with 0, 35, 70, 105, 140, 175 and 210 mM NaCl for 40 days. Relative fresh weight growth of callus in response to increased salinity in the culture medium was much greater in L pennellii than in the tomato cultivars, and greater in the hybrids than in the wild species. Moreover, the different salt tolerance degree of hybrids was related to that of female parents. At high salt levels, only Cl accumulation was higher in L pennellii than in tomato cultivars, whereas in the hybrids both Cl, and Na+ accumulation were higher than in their parents. Proline increased with salinity in the callus of all genotypes; these increases were much higher in the tomato cultivars than in L pennellii, and the hybrids showed a similar response to that of the wild species. Salt-treated callus of the tomato cultivars showed significant increases in valine, isoleucine and leucine contents compared to control callus tissue. In contrast, these amino acids in callus tissues of the wild species and hybrids showed a tendency to decrease with increasing salinity.  相似文献   

20.
Summary We tested the hypothesis that mycorrhizal infection benefits wild plants to a lesser extent than cultivated plants. This hypothesis stems from two observations: (1) mycorrhizal infection improves plant growth primarily by increasing nutrient uptake, and (2) wild plants often possess special adaptations to soil infertility which are less pronounced in modern cultivated plants. In the first experiment, wild (Avena fatua L.) and cultivated (A. sativa L.) oats were grown hydroponically at four different phosphorus levels. Wild oat was less responsive (in shoot dry weight) to increasing phosphorus availability than cultivated oat. In addition, the root: shoot ratio was much more plastic in wild oat (varying from 0.90 in the low phosphorus solution to 0.25 in the high phosphorus solution) than in cultivated oat (varying from 0.44 to 0.17). In the second experiment, mycorrhizal and non-mycorrhizal wild and cultivated oats were grown in a phosphorus-deficient soil. Mycorrhizal infection generally improved the vegetative growth of both wild and cultivated oats. However, infection significantly increased plant lifespan, number of panicles per plant, shoot phosphorus concentration, shoot phosphorus content, duration of flowering, and the mean weight of individual seeds in cultivated oat, while it had a significantly reduced effect, no effect, or a negative effect on these characters for wild oat. Poor positive responsiveness of wild oat in these characters was thus associated with what might be considered to be inherent adaptations to nutrient deficiency: high root: shoot ratio and inherently low growth rate. Infection also increased seed phosphorus content and reproductive allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号