首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EstA was purified from the supernatant by A. lwoffii 16C-1. Its molecular mass was determined to be 45 kDa, and the optimal activity occurred when the pH level was 8.0 at a temperature of 37°C. The activation energies for the hydrolysis of p-nitrophenyl butyrate was determined to be 11.25 kcal/mol in the temperature range of 10–37°C. The enzyme was unstable at temperatures higher than 50°C. The Michaelis constant (K m ) and V max for p-nitrophenyl butyrate were 11 μM and 131.6 μM min−1 mg of protein-1, respectively. The enzyme was strongly inhibited by Hg2−, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, Mn2+, Co2+, ethylemediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF), and diisopropyl fluorophosphate (DFP). Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

2.
In order to assess the long-term impacts of saline groundwater irrigation to Haloxylon ammodendron, one of the main shrubs in the Tarim desert highway ecological shelterbelt, we irrigated the H. ammodendron seedlings with progressive saline groundwater (3–30 g L−1, simulation environment in the Tarim desert highway ecological shelterbelt) and investigated the diurnal variations of chlorophyll a (Chl a) fluorescence parameters, such as maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), quantum yield of photochemical energy conversion in PSII (YII), the apparent rate of electron transport at the PSII level (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), quantum yield of nonregulated non-photochemical energy loss in PSII (YNO) and quantum yield of regulated non-photochemical energy loss in PSII (YII), at approximately 2-h intervals. Fv/Fm with 5 g L−1 (S2) was lower than that with 2 g L−1 (S1) but a little higher than 20 g L−1 (S5), respectively. Under the low light [photosyntheticallyactive radiation (PAR) ≤ 250 μmol m−2 s−1, at 08:00, 10:00 and 20:00 h of the local time], S1 kept the lowest YII and the highest YNPQ; while under the high light (PAR ≥ 1500 μmol m−2 s−1), the YII performed S1>S2>S5, and the reverse YNPQ; under mild light (250 μmol mt-2 s−1 ≤ PAR ≤ 1500 μmol m−2 s−1), S1 remained the highest YII, no matter the light and the salinity, the similar YNO almost occurred basically. The results showed that the sand-binding plant H. ammodendron could regulate its energy-utilizing strategies. The S2 might be the most suitable salinity of the irrigation water for H. ammodendron in the Tarim desert highway ecological shelterbelt in the northwest of China.  相似文献   

3.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

4.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

5.
We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited MichaelisMenten kinetics with a K m of 0.1013 mM, V max of 4.858 μmol min−1, K cat of 3.36 S−1, and K cat/K m is 33,168 M−1 S−1. The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol−1 when l-Phenylalanine was used as a substrate; l-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a K i of 8 μM. Competitive inhibitor AIP exhibited potent inhibition with K i = 0.056 μM.  相似文献   

6.
Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) and Haematococcus pluvialis are known as the major prominent microorganisms able to synthesize astaxanthin natural pigment. Important research efforts have been made to determine optimal conditions for astaxanthin synthesis. When the focus is on astaxanthin production, the maximal reported value of 9.2 mg/g cell is obtained within H. pluvialis grown on BAR medium, under continuous illumination (345 μmol photon m−2 s−1) and without aeration. Whereas fermentation by mutated R1 yeast grown on coconut milk produced 1,850 μg/g yeast. However, when looking at astaxanthin productivity, the picture is slightly different. The figures obtained with P. rhodozyma are rather similar to those of H. pluvialis. Maximal reported values are 170 μg/g yeast per day with a wild yeast strain and 370 μg/g yeast per day with mutated R1 yeast. In the case of H. pluvialis, maximal values ranged from 290 to 428 μg/g cell per day depending on the media (BG-11 or BAR), light intensity (177 μmol photon m−2 s−1), aeration, etc. The main aim of this work was to examine how astaxanthin synthesis, by P. rhodozyma and H. pluvialis, could be compared. The study is based on previous works by the authors where pigment productions have been reported.  相似文献   

7.
Induction of high-frequency shoot regeneration using nodal segments containing axillary buds from a 1-yr-old mother plants of Cannabis sativa was achieved on Murashige and Skoog (MS) medium containing 0.05–5.0 μM thidiazuron. The quality and quantity of regenerants were better with thidiazuron (0.5 μM thidiazuron) than with benzyladenine or kinetin. Adding 7.0 μM of gibberellic acid into a medium containing 0.5 μM thidiazuron slightly increased shoot growth. Elongated shoots when transferred to half-strength MS medium supplemented with 500 mg l−1 activated charcoal and 2.5 μM indole-3-butyric acid resulted in 95% rooting. The rooted plants were successfully acclimatized in soil. Following acclimatization, growth performance of 4-mo-old in vitro propagated plants was compared with ex vitro vegetatively grown plants of the same age. The photosynthesis and transpiration characteristics were studied under different light levels (0, 500, 1,000, 1,500, or 2,000 μmol m−2 s−1). An increase in photosynthesis was observed with increase in the light intensity up to 1,500 μmol m−2 s−1 and then decreased subsequently at higher light levels in both types of plants. However, the increase was more pronounced at lower light intensities below 500 μmol m−2 s−1. Stomatal conductance and transpiration increased with light intensity up to highest level (2000 μmol m−2 s−1) tested. Intercellular CO2 concentration (C i) and the ratio of intercellular CO2 concentration to ambient CO2 (C i/C a) decreased with the increase in light intensity in both in vitro as well as ex vitro raised plants. The results show that in vitro propagated and hardened plants were functionally comparable to ex vitro plants of same age in terms of gas and water vapor exchange characteristics, within the limits of this study.  相似文献   

8.
To overcome the extracellular salt stress, Methanohalophilus portucalensis FDF1T synthesizes the compatible solute betaine through the methylation of glycine, sarcosine, and N,N-dimethylglycine. S-adenosylmethionine (AdoMet) is the methyl donor. The enzyme sarcosine dimethylglycine N-methyltransferase (SDMT) of M. portucalensis, that catalyzes the formation of N,N-dimethylglycine and glycine betaine, has been purified and characterized. SDMT, a monomer of 33 kDa with a pI at 5.03, has a narrow substrate specificity limited to using only sarcosine and dimethylglycine as substrates for the methyl transferase reaction. The K m values for sarcosine and AdoMet were 2.29 and 0.21 mM, respectively, with a V max of 0.83 μmol/mg-min (k cat value of 0.44 s−1). The K m values for dimethylglycine and AdoMet were 3.76 and 0.59 mM, respectively, with a V max of 4.88 μmol/mg-min (k cat of 2.68 s−1). A high concentration of the end product betaine (2.0 M) did not affect the SMT activity, but it slightly inhibited the DMT activity. Both activities were also not affected by potassium or sodium ions in concentrations of 200–1,000 mM. We compared this novel archaeal SDMT enzyme to other similar bacterial transferases as well as to the glycine sarcosine dimethylglycine methyltransferase found also in M. portucalensis.  相似文献   

9.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

10.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

11.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

12.
Two trypsin isoforms (GT-A and GT-B) from the grass carp (Ctenopharyngodon idellus) intestine were isolated and purified. SDS-PAGE electrophoresis showed that GT-A and GT-B had relative molecular masses of 30,740 and 26,400, respectively. Enzyme activity was inhibited by three organic trypsin inhibitors but not by EDTA. They had optimal pH of 8.0 and 8.5, and optimal temperatures of 38.5 and 44.0°C, respectively, when hydrolyzing N–benzoyl-l-arginine ethyl ester·HCl (BAEE). They lost 95.8 and 93.7% of their activities, respectively, after heating for 20 min at 65°C. Their thermal denaturation temperatures, respectively, were 66.3 and 67.3°C. GT-A has a Km value of 21.2 μM and a Vmax of 2.0 × 103 min−1, and GT-B has a Km value of 31.7 μM and a Vmax of 3.3 × 103 min−1. Their physiological efficiencies were 94.3 and 105.3 μM−1 min−1, respectively. The Arrhenius activation energies of GT-A and GT-B were 4.16 and 4.38 kcal/mol, respectively. The activities of GT-A and GT-B were not activated by Ca2+, but their thermostability was improved in the presence of Ca2+. Enzyme activity was reduced in presence of Zn2+, Cu2+, Hg2+ and Al3+. Thermal stabilities of GT-A and GT-B were intermediate between Arctic and tropical fish species, and consistent with the wide range of water temperatures to which grass carp are exposed in most provinces of China.  相似文献   

13.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

14.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

15.
Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral fragments located at different light intensities, a total carotenoid of >41 μg g−1 dry weight, including peridinin, xanthophylls (likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and β-carotene were detected. The whole content of chl-a weighed 5 μg g−1 dry weight in all coral colonies. Chl-a and carotenoids contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 μmol quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 μmol quanta m−2 s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400 μmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 μmol quanta m−2 s−1. Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances above 100 μmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 μmol quanta m−2 s−1.  相似文献   

16.
Diurnal and seasonal trends in net photosynthetic rate (P N), stomatal conductance (g), transpiration rate (E), vapour pressure deficit, temperature, photosynthetic photon flux density, and water use efficiency (WUE) were compared in a two-year-old Dalbergia sissoo and Hardwickia binata plantation. Mean daily maximum P N in D. sissoo ranged from 21.40±2.60 μmol m−2 s−1 in rainy season I to 13.21±2.64 μmol m−2 s−1 in summer whereas in H. binata it was 20.04±1.20 μmol m−2 s−1 in summer and 13.64±0.16 μmol m−2 s−1 in winter. There was a linear relationship between daily maximum P N and g s in D. sissoo but there was no strong linear relationship between P N and g s in H. binata. In D. sissoo, the reduction in g s led to a reduction in both P N and E enabling the maintenance of WUE during dry season thereby managing unfavourable environmental conditions efficiently whereas in H. binata, an increase in g s causes an increase of P N and E with a significant moderate WUE.  相似文献   

17.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

18.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

19.
20.
A modified exponential model was used to describe light-response curves of Nicotiana tabacum L. The accuracies of an exponential model, a nonrectangular hyperbola model, a rectangular hyperbola model, a modified rectangular hyperbola model and the modified exponential model were evaluated by Mean square error (MSE) and Mean absolute error (MAE). The tests MSE and MAE of the modified exponential model were the lowest among the five models. The light saturation point (LSP) obtained by the exponential model, the nonrectangular hyperbola model and the rectangular hyperbola model were much lower than the measured values, and the maximum net photosynthetic rates (P max) calculated from these models, were greater than the measured values. P max at LSP of 1,077 μmol m−2 s−1 calculated by the modified exponential model was 12.34 μmol(CO2) m−2 s−1, which was more accurate than the values obtained from the modified rectangular hyperbola model. The results show that the modified exponential model is superior to other models for describing light-response curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号