首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological (light microscopical, immunohistological and electron microscopical) findings in the recipient liver of rats with streptozotocin-induced diabetes, obtained 9 months after intraportal injection of neonatal isologous pancreatic islets, are described and their significance discussed. - The results support the assumption of active ingrowth of nonmyelinated nerve fibers into the islet isografts. - The hepatocytes surrounding the islet isografts contain-obviously owing to the influence of unusually high and locally variable concentrations of insulin-a focally increased number of enlarged mitochondria, abundant glycogen and a smaller amount of neutral fat droplets. Furthermore, hepatocytes and cells looking like hepatocytes (hepato-cyte-like cells) with typically structured cytoplasmic beta(insulin)granules were found bordering the islet isografts. These results could be interpreted as an expression of arteficial or nonarteficial fusion of beta cells with hepatocytes, i.e. formation of hybrid cells (“in vivo hybridization”). Alternatively, they might reflect insulin uptake and storage in the hepatocytes. In addition, these findings suggest that contact between neonatal islet tissue and liver tissue could be a trigger for the in vivo transformation (modulation) of differentiated cells of similar embryonic development in the adult organism.  相似文献   

2.
MEG3是一种长链非编码RNA。已有研究证明,鼠源Meg3参与小鼠诱导多能干细胞、神经元和视网膜的分化过程。最新报道,MEG3在人胰岛β细胞中高表达,但其对维持成年胰岛β细胞的功能尚不清楚。本研究旨在探讨Meg3在小鼠胰岛细胞胰岛素分泌功能中的作用。实时定量PCR揭示,与Balb/c小鼠心、肝、脾、肺、肌、肾等组织/器官比较,Meg3在胰腺组织中高表达。在非糖尿病小鼠发生自发性糖尿病的第8、12周,Meg3在胰岛中的表达水平分别下调24%±8%和29%±9% (P<0.01);而当血糖升高20 mmol/L,小鼠胰岛中Meg3表达下调72%±16%(P<0.01)。在MIN6细胞中采用RNA干扰敲减Meg3的表达,在高糖浓度(20 mmol/L)刺激条件下,胰岛素分泌显著减少。小鼠静脉注射siRNA,结合血糖测定或葡萄糖耐受试验(IPGTT)显示,si-Meg3小鼠血清胰岛素水平显著下降。注射葡萄糖前血糖升高,注射葡萄糖后耐受能力降低;免疫组化分析显示,si-Meg3小鼠胰岛素阳性细胞的面积减少。实验结果提示,Meg3通过参与胰岛素的合成和分泌维持成年小鼠胰岛功能。Meg3表达失调可能参与I型糖尿病(T1DM)发病过程。  相似文献   

3.
The establishment of surrogate islet beta cells is important for the treatment of diabetes. Hepatocytes have a similar glucose sensing system as beta cells and have the potential to serve as surrogate beta cells. In this report, we demonstrate that infection of Hepa1-6 liver cells with a lentivirus expressing the human insulin cDNA results in expression and secretion of human insulin. Furthermore, we show that l-arginine at low levels of glucose significantly stimulates the release of insulin from these cells, compared to exposure to high concentration of glucose. The arginine-induced insulin release is via the production of nitric oxide, since treatment with N(G)-nitro-l-arginine, an inhibitor of nitric oxide synthase, blocks insulin secretion induced by l-arginine. These results indicate that nitric oxide plays a role in l-arginine-stimulated insulin release in hepatocytes expressing the human insulin gene, and provides a new strategy to induce insulin secretion from engineered non-beta cells.  相似文献   

4.
The feasibility of using avipox virus as a vector for gene delivery to islet tissue (adult islets and fetal proislets) was examined using a recombinant fowlpox virus (FPV) engineered to express the reporter gene LacZ (FPV-LacZ). The efficiency of in vitro transduction was dose-dependent and influenced by the donor species and maturation status of the islet tissue. Reporter gene expression in FPV-LacZ-transduced islet grafts was transient (3-7 days) in immunoincompetent nude mice and was not prolonged by in vivo treatment with anti-IFN-gamma mAb. In contrast, FPV-LacZ-transduced NIT-1 cells (a mouse islet beta cell line) expressed the LacZ gene beyond 18 days in vitro. Silencing of transgene expression therefore appeared to occur in vivo and was T cell- and IFN-gamma-independent. Isografts of FPV-LacZ-transduced islets in immunocompetent mice underwent immunological destruction by 7 days, suggesting that either FPV proteins or the reporter protein beta-galactosidase induced an adaptive immune response. Co-delivery of the rat bioactive immunoregulatory cytokine gene TGF-beta to islets using FPV-TGF-beta led to enhanced expression of TGF-beta mRNA in isografts but no long-term protection. Nevertheless, compared to control islet isografts at 5 days, FPV-transduced islets remained embedded in the clotted blood used to facilitate implantation. This phenomenon was TGF-beta transgene-independent, correlated with lack of cellular infiltration, and suggested that the FPV vector transformed the blood clot into a temporary immunological barrier.  相似文献   

5.
Hepatocyte growth factor (HGF) is produced in pancreatic mesenchyme-derived cells and in islet cells. In vitro, HGF increases the insulin content and proliferation of islets. To study the role of HGF in the islet in vivo, we have developed three lines of transgenic mice overexpressing mHGF using the rat insulin II promoter (RIP). Each RIP-HGF transgenic line displays clear expression of HGF mRNA and protein in the islet. RIP-mHGF mice are relatively hypoglycemic in post-prandial and fasting states compared with their normal littermates. They display inappropriate insulin production, striking overexpression of insulin mRNA in the islet, and a 2-fold increase in the insulin content in islet extracts. Importantly, beta cell replication rates in vivo are two to three times higher in RIP-HGF mice. This increase in proliferation results in a 2-3-fold increase in islet mass. Moreover, the islet number per pancreatic area was also increased by approximately 50%. Finally, RIP-mHGF mice show a dramatically attenuated response to the diabetogenic effects of streptozotocin. We conclude that the overexpression of HGF in the islet increases beta cell proliferation, islet number, beta cell mass, and total insulin production in vivo. These combined effects result in mild hypoglycemia and resistance to the diabetogenic effects of streptozotocin.  相似文献   

6.
Sixteen children (aged between 1 month and 20 years) with alpha-1-antitrypsin deficiency (PiZ) were investigated by liver biopsy on one or more occasions. Eight patients had suffered from neonatal cholestasis, and two of them were investigated during the cholestatic period as well. The clinical status and liver function tests were compared with the light and electron microscopical findings. According to the light microscopical analyses at the latest investigation, the cholestatic and noncholestatic patients were classified as healthy, fibrotic or cirrhotic cases. All livers displayed periodic acid-Schiff positive, diastase-resistant globules in some but not all periportally located hepatocytes. By electron microscopy accumulation of retained secretory material was found in all PiZ patients. This accumulation was most conspicuous in the smooth endoplasmic reticulum of hepatocytes. alpha-1-antitrypsin deficiency seems to affect some, but not all hepatocytes. In the affected cells disappearance or hypotrophy of the Golgi complex could be observed. The intracellular transport of very low density lipoproteins (VLDL) was apparently not affected. The migration block in alpha-1-antitrypsin deficiency seems to occur before transportation to the Golgi complex. The extent of the involvement was not strictly age-dependent. There was no ultrastructural evidence of subclinical cholestasis as a possible triggering factor in the development of cirrhosis.  相似文献   

7.
8.
9.
In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dysfunction. Deletion of PKCepsilon augmented insulin secretion and prevented glucose intolerance in fat-fed mice. Importantly, a PKCepsilon-inhibitory peptide improved insulin availability and glucose tolerance in db/db mice with preexisting diabetes. Functional ablation of PKCepsilon selectively enhanced insulin release ex vivo from diabetic or lipid-pretreated islets and optimized the glucose-regulated lipid partitioning that amplifies the secretory response. Independently, PKCepsilon deletion also augmented insulin availability by reducing both whole-body insulin clearance and insulin uptake by hepatocytes. Our findings implicate PKCepsilon in the etiology of beta cell dysfunction and highlight that enhancement of insulin availability, through separate effects on liver and beta cells, provides a rationale for inhibiting PKCepsilon to treat type 2 diabetes.  相似文献   

10.
COUP-TFII has an important role in regulating metabolism in vivo. We showed this previously by deleting COUP-TFII from pancreatic beta cells in heterozygous mutant mice, which led to abnormal insulin secretion. Here, we report that COUP-TFII expression is reduced in the pancreas and liver of mice refed with a carbohydrate-rich diet and in the pancreas and liver of hyperinsulinemic and hyperglycemic mice. In pancreatic beta cells, COUP-TFII gene expression is repressed by secreted insulin in response to glucose through Foxo1 signaling. Ex vivo COUP-TFII reduces insulin production and secretion. Our results suggest that beta cell insulin secretion is under the control of an autocrine positive feedback loop by alleviating COUP-TFII repression. In hepatocytes, both insulin, through Foxo1, and high glucose concentrations repress COUP-TFII expression. We demonstrate that this negative glucose effect involves ChREBP expression. We propose that COUP-TFII acts in a coordinate fashion to control insulin secretion and glucose metabolism.  相似文献   

11.
12.
In this article we have presented a philosophical and historical perspective on quick freezing, freeze-drying, freeze-substitution, and immunocytochemical localization of pancreatic islet hormones. A compilation of our findings indicates that quick-freezing does not produce any gross distortion of islet tissue; the amount of usable islet tissue for ultrastructural analysis is approximately 13 micron deep from the frozen edge; three different cell types can be identified in quick-frozen tissue based on general morphological characteristics; freeze-substitution with tetrahydrofuran produces a unique ultrastructural appearance in which ribosomes are particularly striking; with the use of protein A-gold, insulin and glucagon can be localized immunocytochemically on silver-gray (50-nm-thick) sections treated with 1% ovalbumin at room temperature overnight; secretory granules of quick-frozen alpha and beta cells may exist in either a swollen or condensed state; swollen beta cell secretory granules contain a filamentous material that demonstrates immunogold labeling for insulin; insulin and glucagon can be localized within the cisternae of endoplasmic reticulum; our methods provide not only discrete immunocytochemical localization of hormone, but also well-preserved cellular compartments; energy electron loss spectroscopy (EELS) has shown that quantifiable nitrogen maps can be used as an index of hormone packaging in secretory granules; and the sectioning properties of secretory granules at the ultramicrotome change when islet tissue is unosmicated and sectioned on glycerol.  相似文献   

13.
We investigated short-term in vivo and in vitro effects of streptozotocin (STZ) on pancreatic beta cells. Male Wistar rats were treated with 75 mg/kg STZ, and, after 4 hrs blood glucose and insulin were measured and islet cells were isolated, cultured for 16 hrs, and challenged with 5.6 and 15.6 mM glucose. Treated rats showed hyperglycemia (approximately 14 mM) and a 70% decrease in serum insulin levels as compared with controls. Although insulin secretion by isolated beta cells from STZ-treated rats was reduced by more than 80%, in both glucose concentrations, nerve growth factor (NGF) secretion by the same cells increased 10-fold. Moreover, NGF messenger RNA (mRNA) expression increased by 30% as compared with controls. Similar results were obtained in an in vitro model of islet cells, in which cells were exposed directly to STZ for 1, 2, and 4 hrs and then challenged for 3 hrs with the same glucose concentrations. Our data strongly suggest that an early increase in NGF production and secretion by beta cells could be an endogenous protective response to maintain cell survival and that diabetes mellitus may occur when this mechanism is surpassed.  相似文献   

14.
15.
Fetal and neonatal pancreatic islets present a lower insulin secretory response as compared with adult islets. Prolonged culturing leads to an improvement of the glucose-induced insulin secretion response in neonatal pancreatic islets that may involve regulation of gap junction mediated cell communication. In this study, we investigated the effect of culturing neonatal islet cells for varying periods of time and with different glucose medium concentrations on the cellular expression of the endocrine pancreatic gap junction associated connexin (Cx) 36 and Cx43. We report here that the 7-d culture induced upregulation of the expression of these junctional proteins in neonatal islets in a time-dependent manner. A correlation was observed between the increased mRNA and protein expression of Cx36 and Cx43 and the increased insulin secretion following islet culturing. In addition, increasing glucose concentration within the culture medium induced a concentration-dependent enhancement of Cx36 islet expression, but not of Cx43 expression in cultured neonatal islets. In conclusion, we suggest that the regulation of gap junctional proteins by culture medium containing factors and glucose may be an important event for the maturation process of beta cells observed at in vitro conditions.  相似文献   

16.
Pancreatic beta cells are sensitive to reactive oxygen species and this may play an important role in type 1 diabetes and during transplantation. Beta cells contain low levels of enzyme systems that protect against reactive oxygen species. The weakest link in their protection system is a deficiency in the ability to detoxify hydrogen peroxide by the enzymes glutathione peroxidase and catalase. We hypothesize that the deficit in the ability to dispose of reactive oxygen species is responsible for the unusual sensitivity of beta cells and that increasing protection will result in more resistant beta cells. To test these hypotheses we have produced transgenic mice with increased beta cell levels of catalase. Seven lines of catalase transgenic mice were produced using the insulin promoter to direct pancreatic beta cell specific expression. Catalase activity in islets from these mice was increased by as much as 50-fold. Northern blot analysis of several tissues indicated that overexpression was specific to the pancreatic islet. Catalase overexpression had no detrimental effects on islet function. To test whether increased catalase activity could protect the transgenic islets we exposed them to hydrogen peroxide, streptozocin, and interleukin-1beta. Fifty-fold overexpression of catalase produced marked protection of islet insulin secretion against hydrogen peroxide and significantly reduced the diabetogenic effect of streptozocin in vivo. However, catalase overexpression did not provide protection against interleukin-1beta toxicity and did not alter the effects of syngeneic and allogenic transplantation on islet insulin content. Our results indicate that in the pancreatic beta cell overexpression of catalase is protective against some beta cell toxins and is compatible with normal function.  相似文献   

17.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

18.
Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.  相似文献   

19.
Whim MD 《PloS one》2011,6(4):e19478

Background

In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells.

Methodology/Principal Findings

NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds.

Conclusions

These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.  相似文献   

20.
Summary In untreated primary cultures of neonatal rat liver kept in high-calcium (1.8 mmol/l), foetal bovine serum (10%v/v)-containing minimal essential medium (FBSMEM), the absolute numbers of hepatocytes did not change between day 4 and day 9 because ongoing cell loss was counterbalanced by proliferation of a discrete sub-population of the cells. By contrast, the number of stromal cells increased linearly with time. Growth of hepatocytes and stromal cells was differently affected by the daily addition, between day 4 and day 8 of culture, of fresh medium to which peptide mitogen(s) in concentrations ranging from 10-14 to 10-8 mol/l had been added. Epidermal growth factor/urogastrone (EGF/URO) with or without equimolar mixtures of glucagon and insulin, induced first hyperplasia of hepatocytes and stromal cells and then apopotosis (degeneration and death) of the progeny of the stimulated cells. By contrast, equimolar mixtures of glucagon and insulin caused a progressive increase in the number of hepatocytes and stromal cells unbalanced by any increase in cell death. At subphysiological concentrations glucagon, in synergism with EGF/URO and/or some other unknown heat-stable component of serum, acted as a trophic factor for hepatocytes. By contrast, insulin alone did not enhance growth of hepatocytes, but rather blocked the mitogenic effects of EGF/URO. The three hormones exerted neither mitogenic nor apoptotic effects when administered in a low calcium (0.01 mmol/l) FBS-MEM medium.These results reveal that EGF/URO may control the size of cell populations in neonatal liver by calcium-dependent mechanisms that make it unlikely to be a promoter of hepatocyte tumours. They also show that glucagon acts as a positive trophic regulator for hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号