首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To assess the interaction between stress and energy homeostasis, we immobilized male Sprague-Dawley rats prone to diet-induced obesity (DIO) or diet resistance (DR) once for 20 min and then fed them either low-fat (4.5%) chow or a medium-fat (31%), high-energy (HE) diet for 9 days. Stressed, chow-fed DIO rats gained less, while stressed DIO rats on HE diet gained more body weight and had higher feed efficiency and plasma leptin levels than unstressed controls. Neither stress nor diet affected DR body weight gain. While stress-induced plasma corticosterone levels did not differ between phenotypes, DIO rats were initially more active in an open field and had higher hippocampal dentate gyrus and CA1 glucocorticoid receptor (GR) mRNA than DR rats, regardless of prior stress or diet. HE diet intake was associated with raised dentate gyrus and CA1 GR and amygdalar central nucleus (CeA) corticotropin-releasing hormone (CRH) mRNA expression, while stress was associated with reduced hypothalamic dorsomedial nucleus Ob-R mRNA and CeA CRH specifically in DIO rats fed HE diet. Thus a single stress triggers a complex interaction among weight gain phenotype, diet, and stress responsivity, which determines the body weight and adiposity of a given individual.  相似文献   

3.
Torri C  Pedrazzi P  Leo G  Müller EE  Cocchi D  Agnati LF  Zoli M 《Peptides》2002,23(6):1063-1068
Hypothalamic mRNA and peptide levels of pro-opio-melanocortin (POMC) and other neuropeptides were studied in rats that either develop obesity (diet-induced obese, DIO), when fed a palatable and hypercaloric diet (cafeteria diet, caf) or do not develop obesity (diet resistant, DR), when fed the same diet. cafDIO rats showed a significant increase in POMC, but not in melanin concentrating hormone, mRNA levels as determined by semiquantitative in situ hybridization. cafDR and cafDIO rats showed no change in POMC-derived peptide levels, whereas neuropeptide Y immunoreactivity was significantly increased in cafDR rats. POMC mRNA levels were also studied in high-fat diet-fed rats but no significant change was observed. Altered hypothalamic transmission by POMC-derived peptides may contribute to the susceptibility of cafDIO rats to the weight promoting action of caf diet.  相似文献   

4.
Rats selectively bred to develop diet-induced obesity (DIO) spontaneously gain more body weight between 5 and 7 wk of age than do those bred to be diet resistant (DR). Here, chow-fed DIO rats ate 9% more and gained 19% more body weight from 5 to 6 wk of age than did DR rats but had comparable leptin and insulin levels. However, 6-wk-old DIO rats had 29% lower plasma ghrelin levels at dark onset but equivalent levels 6 h later compared with DR rats. When subsequently fed a high-energy (HE; 31% fat) diet for 10 days, DIO rats ate 70% more, gained more body and adipose depot weight, had higher leptin and insulin levels, and had 22% lower feed efficiency than DR rats fed HE diet. In DIO rats on HE diet, leptin levels increased significantly at 3 days followed by increased insulin levels at 7 days. These altered DIO leptin and ghrelin responses were associated with 10% lower leptin receptor mRNA expression in the arcuate (ARC), dorsomedial (DMN), and ventromedial hypothalamic nuclei and 13 and 15% lower ghrelin receptor (GHS-R) mRNA expression in the ARC and DMN than in the DR rats. These data suggest that increased ghrelin signaling is not a proximate cause of DIO, whereas reduced leptin sensitivity might play a causal role.  相似文献   

5.
We assessed the effect of early-onset exercise as a means of preventing childhood obesity using juvenile male rats selectively bred to develop diet-induced obesity (DIO) or to be diet resistant (DR) when fed a 31% fat high-energy diet. Voluntary wheel running begun at 36 days of age selectively reduced adiposity in DIO vs. DR rats. Other 4-wk-old DIO rats fed a high-energy diet and exercised (Ex) for 13 wk increased their core temperature, gained 22% less body weight, and had 39% lighter fat pads compared with sedentary (Sed) rats. When wheels were removed after 6 wk (6 wk Ex/7 wk Sed), rats gained less body weight over the next 7 wk than Sed rats and still had comparable adipose pad weights to 13-wk-exercised rats. In fact, only 3 wk of exercise sufficed to prevent obesity for 10 wk after wheel removal. Terminally, the 6-wk-Ex/7-wk-Sed rats had a 55% increase in arcuate nucleus proopiomelanocortin mRNA expression vs. Sed rats, suggesting that this contributed to their sustained obesity resistance. Finally, when Sed rats were calorically restricted for 6 wk to weight match them to Ex rats (6 wk Rstr/7 wk Al), they increased their intake and body weight when fed ad libitum and, after 7 wk more, had higher leptin levels and adiposity than Sed rats. Thus, early-onset exercise may favorably alter, while early caloric restriction may unfavorably influence, the development of the hypothalamic pathways controlling energy homeostasis during brain development.  相似文献   

6.
The selectively bred diet‐induced obese (DIO) and diet‐resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high‐energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin‐producing β‐cells. At the time of weaning, DR rats were found to have a higher body weight and β‐cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow‐fed DIO rats steadily increased their body weight and β‐cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased β‐cell mass. Interestingly, although the β‐cell mass in DR rats and chow‐fed DIO rats appeared to constantly increase with age, the β‐cell mass in the HE‐fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE‐fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.  相似文献   

7.
Half of Sprague-Dawley rats develop and defend diet-induced obesity (DIO) or diet resistance (DR) when fed a high-energy (HE) diet. Here, adult male rats were made DIO or DR after 10 wk on HE diet. Then half of each group was food restricted for 8 wk on chow to maintain their body weights at 90% of their respective baselines. Rate and magnitude of weight loss were comparable, but maintenance energy intake and the degree of sympathetic activity (24-h urine norepinephrine) inhibition were 17 and 29% lower, respectively, in restricted DR than DIO rats. Restricted DIO rats reduced adipose depot weights, plasma leptin, and insulin levels by 35%. Restricted DR rats reduced none of these. When fed ad libitum, both DR and DIO rats returned to the body weights of their respective chow-fed phenotype controls within 2 wk. This was associated with increased adipose mass and leptin and insulin levels only in DIO rats. Thus DR rats appear to alter primarily their lean body mass, whereas DIO rats primarily alter their adipose mass during chronic caloric restriction and refeeding.  相似文献   

8.
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and alpha-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and alpha-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes.  相似文献   

9.
The aim of the present work was to assess whether changes in adipose tissue gene expression related with adipogenesis and/or thermogenesis could be involved in the mechanism conferring susceptibility or resistance to develop obesity in high-fat fed outbreed rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or high fat diet. After 15 days, two groups of rats with significant differences on body weight gain in response to the high fat diet were characterized and identified as diet-induced obesity (DIO) and diet resistant (DR) rats. A significant increase in visceral white adipose tissue (WAT) PPARgamma and aP2 (p < 0.05) mRNA levels associated to a decrease in RARgamma expression (p < 0.05) was observed in DIO rats, suggesting an increase of adipogenesis. Furthermore, our data showed a marked increase in brown adipose tissue (BAT) of UCP1 mRNA in DIO animals (p < 0.01) (without affecting PGC-1alpha gene expression), whereas no changes were found in WAT UCP2 gene expression. All these data suggest that the variations found in the expression pattern of PPARgamma, aP2 and RARgamma by high-fat diet could be involved, at least in part, in the differences in body weight gain and adiposity observed between DR and DIO animals. The compensatory adaptations through the increase in energy expenditure by changes on the expression levels of UCP1 seem not to be enough to avoid the obesity onset in the DIO group.  相似文献   

10.
The aim of the present study was to identify the role of leptin and adiponectin in the development of resistance or susceptibility to diet-induced obesity in rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or cafeteria diet. After 15 days, two groups of rats with different response respect to the cafeteria diet were identified, and were assigned as diet-induced obesity (DIO) and diet resistant (DR) rats. The high-fat diet induced a very significant increase in both body and fat mass weight in DIO group. However, DR rats, gained even less weight than control-fed animals. Food intake was increased in cafeteria-fed rats (both DIO and DR) in comparison to control group; but hyperphagia was higher in DIO rats. In addition, feed efficiency (the ratio of weight gained to calories consumed) was significantly decreased in DR as compared to DIO rats. Regarding leptin, a significant increase in both adipose tissue gene expression and serum levels was observed in DIO rats in comparison with other groups (control and DR). A significant increase in both adiponectin circulating levels and adipose tissue mRNA expression was also observed in DIO animals as compared with the other groups. These data suggest that the susceptibility to obesity of DIO rats might be secondary, at least in part, to an earlier development of leptin resistance, which could lead to alterations in food intake (hyperphagia) and energetic metabolism. However, neither changes in leptin or adiponectin seem to be involved in the adaptive mechanisms that confer resistance to high fat intake.  相似文献   

11.
Rats prone to develop diet-induced obesity (DIO) have reduced central sensitivity to many metabolic and hormonal signals involved in energy homeostasis. High-fat diets produce similar defects in diet-resistant (DR) rats. To test the hypothesis that genotype and diet exposure would similarly affect central insulin signaling, we assessed the anorectic effects of 8 mU third ventricular (iv3t) insulin before and after 4 wk intake of a 31% fat, high-energy (HE) diet intake in outbred (OutB) rats. Rats were retrospectively designated as DR or DIO by their low or high weight gains on HE diet. Before the HE diet, iv3t insulin reduced 4-h and 24-h chow intake by 53% and 69% in DR rats but by only 17% and 27% in DIO rats, respectively. Also, the anorectic response to iv3t insulin in OutB rats was inversely correlated (r = 0.72, P = 0.002) with subsequent 4-wk weight gain on the HE diet. Similarly, in selectively bred (SB) chow-fed DR rats, 8 mU iv3t insulin reduced 4-h and 24-h intake by 21% and 22%, respectively, but had no significant effect in SB DIO rats. Four-week HE diet intake reduced 4-h and 24-h insulin-induced anorexia by 45% in OutB DR rats and completely abolished it in SB DR rats. Reduced insulin responsiveness was unassociated with differences in arcuate nucleus insulin receptor mRNA expression between DIO and DR rats or between rats fed chow or HE diet. These data suggest that DIO rats have a preexisting reduction in central insulin signaling, which might contribute to their becoming obese on the HE diet. However, since the HE diet reduced central insulin sensitivity in DR rats but did not make them obese, it is likely that other brain areas are involved in insulin's anorectic action or that other pathways contribute to the development and maintenance of obesity.  相似文献   

12.
13.
Li J  Ma W  Wang S 《Regulatory peptides》2011,171(1-3):53-57
Gastrointestinal (GI) motility and gut hormones have been considered to be involved in the development and maintenance of obesity. Our aim was to assess the relationships between gastric emptying (GE), GI transit and gut hormones and leptin concentrations in diet-induced obese rat model. Male 6-week-old Sprague-Dawley rats were fed with a high-fat (HF) diet for 8weeks to generate diet-induced obesity (DIO) and diet resistant (DR) rats. GE, GI transit and plasma ghrelin, cholecystokinin (CCK), PYY and leptin concentrations were determined in DIO, DR and control (CON) rats. The DIO rats had slower GE, higher plasma leptin and CCK concentrations, and lower plasma ghrelin concentration compared with CON and DR rats. GE was correlated with plasma ghrelin (r=0.402, P=0.028), CCK (r=-0.518, P=0.003) and leptin concentration (r=-0.514, P=0.004). The slower GE, which can be considered as an adaptive response aimed at HF diet induced obesity, may be mediated by changes of plasma ghrelin, CCK and leptin concentrations.  相似文献   

14.
Fei-Wang  Tian DR  Tso P  Han JS 《Peptides》2012,35(1):23-30
AMPK not only acts as a sensor of cellular energy status but also plays a critical role in the energy balance of the body. In this study, LKB1-AMPK signaling was investigated in diet-induced obese (DIO) and diet resistant (DR) rats. In hypothalamus, DIO rats had lower level of LKB1, AMPKα and pAMPKα than chow-fed or DR rats. Both orexigenic peptide NPY and anorexigenic peptide POMC expression were reduced in hypothalamus of DIO rats. i.c.v. injection of AICAR, an activator of AMPK, increased NPY expression but did not alter POMC expression in DIO rats. In periphery, LKB1 protein content and pAMPKα level were lower in the adipose tissue of DIO rats compared to chow-fed and DR rats. Moreover, pAMPKα and LKB1 protein levels obtained from epididymal fat pad were inversely correlated with epididymal fat mass. LKB1 protein content and pAMPKα in skeletal muscle of DIO rats were not different from those in the muscles of chow-fed and DR rats. In summary, DIO rats, but not DR rats, have impaired LKB1-AMPK signaling in hypothalamus and adipose tissue, suggesting the disturbed energy balance observed in DIO rats is related with abnormalities of AMPK signaling in a tissue specific manner.  相似文献   

15.
Male Sprague-Dawley rats, which are prone to develop diet-induced obesity (DIO) on a high energy (HE) diet can be separated from rats which are diet-resistant (DR) by several prospective tests. Using such tests, chow-fed DR-prone rats have higher binding of 3H paraminoclonidine (PAC) to brain α2-adrenoceptors than do DIO-prone rats. These differences disappear after 3 months on a HE diet. To study the predictive value of these tests and possible associated changes in presynaptic membrane composition, brain α1-(1nM 3H prazosin) and α2-adrenoceptor (1nM 3H PAC) binding and synaptosomal fatty acid composition were assessed in 3-month-old male rats separated by weight gain into DR and DIO groups after 1 month on a HE diet. DIO had comparable total caloric intake but gained 30% and 43% more weight and were hyperinsulinemic compared to DR and chow-fed rats, respectively. After 1 month on a HE diet, DR rats still had 15%-53% higher 3H PAC binding than DIO and/or chow-fed rats in 14 of 16 brain areas assessed. A phenotype effect was present primarily in the amygdala where DR rats had higher 3H PAC binding than DIO rats. A diet effect was seen in some hypothalamic nuclei where both DR and DIO rats had higher 3H PAC binding than chow-fed rats. Conversely, DIO rats had 14%–21% higher 3H prazosin binding than DR rats in 3 brain areas. Changes in brain synaptosomal membranes' fatty acids reflected both phenotype and diet effects. Thus, while diet composition affects presynaptic membrane composition and α2-adrenoceptor binding in both DR and DIO rats, the predominance of plasticity of these parameters is limited to the brains of DR rats. This suggests that such plasticity may be an important determinant of the ability to resist the development of diet-induced obesity on a HE diet.  相似文献   

16.
超重与肥胖是许多代谢相关疾病的危险因素,严重威胁人类健康和生命。通常认为肥胖的发生是遗传因素与环境因素相互作用的结果。在构建饮食性肥胖模型过程中,动物常出现两种截然不同的表型,即肥胖易感和肥胖抵抗。既往研究主要基于体重、体成分、物质与能量代谢、行为学(如摄食偏好)等探讨肥胖易感型和肥胖抵抗型表型差异,然而其内部调控机制,仍没有较为明确而系统的阐述。本文在综述表型特征的基础上,从脂质代谢、胃肠道激素水平和肠道炎症、肠道微生物群和肠-脑轴信号通路、下丘脑-垂体-甲状腺轴、下丘脑弓状核食欲调节系统功能改变以及表观遗传学等方面探讨高脂饮食诱导肥胖表型差异的可能机制。  相似文献   

17.
Rats that develop diet-induced obesity (DIO) on a 31% fat [high-energy (HE)] diet have defective sensing and responding to altered glucose levels compared with diet-resistant (DR) rats. Thus we postulated that they would also have defective counterregulatory responses (CRR) to insulin-induced hypoglycemia (IIH). Chow-fed selectively bred DIO and DR rats underwent three sequential 60-min bouts of IIH separated by 48 h. Glucose levels fell comparably, but DIO rats had 22-29% lower plasma epinephrine (Epi) levels during the first two bouts than DR rats. By the third trial, despite comparable Epi levels, DIO rats had lower 30-min glucose levels and rebounded less than DR rats 85 min after intravenous glucose. Although DIO rats gained more carcass and fat weight after 4 wk on an HE diet than DR rats, they were unaffected by prior IIH. Compared with controls, DR rats with prior IIH and HE diet had higher arcuate nucleus neuropeptide Y (50%) and proopiomelanocortin (POMC; 37%) mRNA and an inverse correlation (r = 0.85; P = 0.004) between POMC expression and body weight gain on the HE diet. These data suggest that DIO rats have a preexisting defect in their CRR to IIH but that IIH does not affect the expression of their hypothalamic neuropeptides or weight gain as it does in DR rats.  相似文献   

18.
Outbred Sprague-Dawley rats selectively bred for their propensity to develop diet-induced obesity (DIO) become heavier on low-fat diet than those bred to be diet resistant (DR) beginning at approximately 5 wk of age. Here we assessed the development of metabolic and neural functions for insights into the origins of their greater weight gain. From week 5 to week 10, chow-fed DIO rats gained 15% more body weight and ate approximately 14% more calories but had only slightly greater adiposity and plasma leptin than DR rats. From day 3 through week 10, DIO and DR rats had similar mRNA expression of arcuate nucleus neuropeptide Y, proopiomelanocortin, agouti-related peptide, and all splice variants of the leptin receptor (OB-R). When fed a high-energy (HE; 31% fat) diet, 7-wk-old DIO rats had a 240% increase in plasma leptin levels after only 3 days. Despite this early leptin rise, they maintained a persistent hyperphagia and became more obese than chow-fed DIO rats and DR rats fed chow or HE diet. Their failure to reduce caloric intake, despite high levels of leptin, suggests that selectively bred DIO rats might have reduced leptin sensitivity similar to that seen in the outbred DIO parent strain.  相似文献   

19.
Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin.  相似文献   

20.
Objective: To characterize the meal patterns of free feeding Sprague‐Dawley rats that become obese or resist obesity when chronically fed a high‐fat diet. Research Methods and Procedures: Male Sprague‐Dawley rats (N = 120) were weaned onto a high‐fat diet, and body weight was monitored for 19 weeks. Rats from the upper [diet‐induced obese (DIO)] and lower [diet‐resistant (DR)] deciles for body‐weight gain were selected for study. A cohort of chow‐fed (CF) rats weight‐matched to the DR group was also studied. Food intake was continuously monitored for 7 consecutive days using a BioDAQ food intake monitoring system. Results: DIO rats were obese, hyperphagic, hyperleptinemic, hyperinsulinemic, hyperglycemic, and hypertriglyceridemic relative to the DR and CF rats. The hyperphagia of DIOs was caused by an increase in meal size, not number. CF rats ate more calories than DR rats; however, this was because of an increase in meal number, not size. When expressed as a function of lean mass, CF and DR rats consumed the same amount of calories. The intermeal intervals of DIO and DR rats were similar; both were longer than CF rats. The nocturnal satiety ratio of DIO rats was significantly lower than DR and CF rats. The proportion of calories eaten during the nocturnal period did not differ among groups. Discussion: The hyperphagia of a Sprague‐Dawley rat model of chronic diet‐induced obesity is caused by an increase in meal size, not number. These results are an important step toward understanding the mechanisms underlying differences in feeding behavior of DIO and DR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号