首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloid cells (macrophages, neutrophils, dendritic cells) express a repertoire of plasma membrane receptors able to recognize all classes of macromolecules. The concept of pattern recognition has emphasized microbial ligands and host defence. However, these receptors play a broader role in tissue homeostasis within multicellular hosts, clearing the extracellular environment of potential undesirable ligands arising endogenously as well as from without. This article will evaluate one of the paradigms that underlie innate immunity.  相似文献   

2.
Human cells have a variety of receptors that innately recognize conserved structures on the fungal cell wall. Major receptors include dectin-1, which recognizes β1,3-glucans; mannose receptors, which recognize mannans, and Toll-like receptors 2 and 4. The fungal cell wall is a potent activator of complement, which results in deposition of fragments of the third component of complement that serve as ligands for complement receptors. The nature of the innate immune response is dictated by the relative amount each of these receptors is stimulated. Innate recognition can lead to destruction of the invading fungus and/or initiation of an adaptive immune response. Fungi have a variety of strategies to avoid innate recognition, including masking of ligands and changing their surface properties by phase transition.  相似文献   

3.
Pathogen recognition and innate immunity   总被引:145,自引:0,他引:145  
Akira S  Uematsu S  Takeuchi O 《Cell》2006,124(4):783-801
Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.  相似文献   

4.
Invading pathogens elicit potent immune responses in cells through interactions between structurally conserved molecules derived from the pathogens and specialized innate immune receptors such as the Toll-like receptors (TLRs). Nucleic acid is one of the principal TLR ligands. Nucleic acid-sensing TLRs recognize an array of nucleic acids, including double-stranded RNA, single-stranded RNA, and DNAs with specific sequence motifs. Although ligand-induced dimerization is commonly observed followed by TLR activation, both the specific recognition mechanisms and the ligand–receptor interactions vary among different TLRs. In this review, we highlight our current understanding of how these receptors recognize their cognate ligands based on the recent advances in structural biology.  相似文献   

5.
RTP family members induce functional expression of mammalian odorant receptors   总被引:23,自引:0,他引:23  
Saito H  Kubota M  Roberts RW  Chi Q  Matsunami H 《Cell》2004,119(5):679-691
Transport of G protein-coupled receptors (GPCRs) to the cell surface membrane is critical in order for the receptors to recognize their ligands. However, mammalian GPCR odorant receptors (ORs), when heterologously expressed in cells, are poorly expressed on the cell surface. Here we show that the transmembrane proteins RTP1 and RTP2 promote functional cell surface expression of ORs expressed in HEK293T cells. Genes encoding these proteins are expressed specifically in olfactory neurons. These proteins are associated with OR proteins and enhance the OR responses to odorants. Similar although weaker effects were seen with a third protein, REEP1. These findings suggest that RTP1 and RTP2 in particular play significant roles in the translocation of ORs to the plasma membrane as well as in the functioning of ORs. We have used this approach to identify active odorant ligands for ORs, providing a platform for screening the chemical selectivity of the large OR family.  相似文献   

6.
Animal cells internalize specific extracellular macromolecules (ligands) by using specialized cell surface receptors that operate through a complex and highly regulated process known as receptor-mediated endocytosis, which involves the binding, internalization, and transfer of ligands through a series of distinct intracellular compartments. For the uptake of a variety of carbohydrate-containing macromolecules, such as glycoproteins, animal cells use specialized membrane-bound lectins as endocytic receptors that recognize different sugar residues or carbohydrate structures present on various ligands. The hepatic asialoglycoprotein receptor, which recognizes glycoconjugates containing terminal galactose or N-acetylgalactosamine residues, was the first membrane lectin discovered and has been a classical system for studying receptor-mediated endocytosis. Studies of how the asialoglycoprotein receptor functions have led to the discovery of two functionally distinct, parallel pathways of clathrin-mediated endocytosis (called the State 1 and State 2 pathways), which may also be utilized by all the other endocytic recycling receptor systems. Another endocytic membrane lectin, the hyaluronan/chondroitin sulfate receptor, which has recently been purified and cloned, is responsible for the turnover in mammals of these glycosaminoglycans, which are important components of extracellular matrices. We discuss the characteristics and physiological importance of these two proteins as examples of how lectins can function as endocytic receptors.  相似文献   

7.
Natural killer (NK) cells are a key component of the innate immune system, as they are able to detect microbe-infected cells, tumors as well as allogeneic cells, without specific sensitization. NK cell effector functions (cytotoxicity, cytokine secretion) are regulated by a wide array of inhibitory and activating receptors. MHC class I molecules are the ligands of most inhibitory receptors, while activating receptors recognize either pathogen-encoded molecules, or self-proteins whose expression is up-regulated upon microbial infection or tumor development. Upon integration of these negative and positive signals, Natural Killer cells can discriminate between healthy "self" (tolerance) and autologous cells undergoing different types of cellular stress or allogeneic cells (immunosurveillance). The knowledge of the different mechanisms of target cell recognition is thus crucial to dissect NK cell involvement in homeostatic and disease conditions as well as to develop novel alternative therapeutic approaches based on NK cell manipulation.  相似文献   

8.
Natural killer cells are innate immune cells that control certain microbial infections and tumours. The function of natural killer cells is regulated by a balance between signals transmitted by activating receptors, which recognize ligands on tumours and virus-infected cells, and inhibitory receptors specific for major histocompatibility complex class I molecules. Here, we review the emerging evidence that natural killer cells have an important role in vivo in immune defence.  相似文献   

9.
Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions.  相似文献   

10.
Activated NK cells mediate potent cytolytic and secretory effector functions and are vital components of the early antiviral immune response. NK cell activities are regulated by the assortment of inhibitory receptors that recognize MHC class I ligands expressed on healthy cells and activating receptors that recognize inducible host ligands or ligands that are not well characterized. The activating Ly49H receptor of mouse NK cells is unique in that it specifically recognizes a virally encoded ligand, the m157 glycoprotein of murine CMV (MCMV). The Ly49H-m157 interaction underlies a potent resistance mechanism (Cmv1) in C57BL/6 mice and serves as an excellent model in which to understand how NK cells are specifically activated in vivo, as similar receptor systems are operative for human NK cells. For transduced cells expressing m157 in isolation and for MCMV-infected cells, we show that m157 is expressed in multiple isoforms with marked differences in abundance between infected fibroblasts (high) and macrophages (low). At the cell surface, m157 is exclusively a glycosylphosphatidylinositol-associated protein in MCMV-infected cells. Through random and site-directed mutagenesis of m157, we identify unique residues that provide for efficient cell surface expression of m157 but fail to activate Ly49H-expressing reporter cells. These m157 mutations are predicted to alter the conformation of a putative m157 interface with Ly49H, one that relies on the position of a critical alpha0 helix of m157. These findings support an emerging model for a novel interaction between this important NK cell receptor and its viral ligand.  相似文献   

11.
Integrins     
Integrins are cell adhesion receptors that are evolutionary old and that play important roles during developmental and pathological processes. The integrin family is composed of 24 αβ heterodimeric members that mediate the attachment of cells to the extracellular matrix (ECM) but that also take part in specialized cell-cell interactions. Only a subset of integrins (8 out of 24) recognizes the RGD sequence in the native ligands. In some ECM molecules, such as collagen and certain laminin isoforms, the RGD sequences are exposed upon denaturation or proteolytic cleavage, allowing cells to bind these ligands by using RGD-binding receptors. Proteolytic cleavage of ECM proteins might also generate fragments with novel biological activity such as endostatin, tumstatin, and endorepellin. Nine integrin chains contain an αI domain, including the collagen-binding integrins α1β1, α2β1, α10β1, and α11β1. The collagen-binding integrins recognize the triple-helical GFOGER sequence in the major collagens, but their ability to recognize these sequences in vivo is dependent on the fibrillar status and accessibility of the interactive domains in the fibrillar collagens. The current review summarizes some basic facts about the integrin family including a historical perspective, their structure, and their ligand-binding properties.  相似文献   

12.
Natural killer (NK) cells are lymphocytes that play a major role in the elimination of virally-infected cells and tumor cells. NK cells recognize and target abnormal cells through activation of stimulatory receptors such as NKG2D. NKG2D ligands are self-proteins, which are absent or expressed at low levels on healthy cells but are induced upon cellular stress, transformation, or viral infection. The exact molecular mechanisms driving expression of these ligands remain poorly understood. Here we show that murine cytomegalovirus (MCMV) infection activates the phosphatidylinositol-3-kinase (PI3K) pathway and that this activation is required for the induction of the RAE-1 family of mouse NKG2D ligands. Among the multiple PI3K catalytic subunits, inhibition of the p110α catalytic subunit blocks this induction. Similarly, inhibition of p110α PI3K reduces cell surface expression of RAE-1 on transformed cells. Many viruses manipulate the PI3K pathway, and tumors frequently mutate the p110α oncogene. Thus, our findings suggest that dysregulation of the PI3K pathway is an important signal to induce expression of RAE-1, and this may represent a commonality among various types of cellular stresses that result in the induction of NKG2D ligands.  相似文献   

13.
Bone morphogenetic protein (BMP) ligands signal by binding the BMP type II receptor (BMPR2) or the activin type II receptors (ActRIIa and ActRIIb) in conjunction with type I receptors to activate SMADs 1, 5, and 8, as well as members of the mitogen-activated protein kinase family. Loss-of-function mutations in Bmpr2 have been implicated in tumorigenesis and in the etiology of primary pulmonary hypertension. Because several different type II receptors are known to recognize BMP ligands, the specific contribution of BMPR2 to BMP signaling is not defined. Here we report that the ablation of Bmpr2 in pulmonary artery smooth muscle cells, using an ex vivo conditional knock-out (Cre-lox) approach, as well as small interfering RNA specific for Bmpr2, does not abolish BMP signaling. Disruption of Bmpr2 leads to diminished signaling by BMP2 and BMP4 and augmented signaling by BMP6 and BMP7. Using small interfering RNAs to inhibit the expression of other BMP receptors, we found that wild-type cells transduce BMP signals via BMPR2, whereas BMPR2-deficient cells transduce BMP signals via ActRIIa in conjunction with a set of type I receptors distinct from those utilized by BMPR2. These findings suggest that disruption of Bmpr2 leads to the net gain of signaling by some, but not all, BMP ligands via the activation of ActRIIa.  相似文献   

14.
The Ly49 receptor family plays an important role in the regulation of murine natural killer (NK) cell effector function. They recognize cell surface-expressed class I MHC (MHC-I) and are functionally equivalent to the killer Ig-related receptors (KIRs) in human NK cells. Ly49s exist in activating and inhibitory forms with highly homologous extracellular domains, displaying greater variability in the stalk regions. Inhibitory Ly49s can recognize self-MHC-I and therefore mediate tolerance to self. The role of activating Ly49 receptors is less clear. Some activating Ly49 receptors have been shown to recognize MHC-I molecules. The binding affinity of activating Ly49 receptors with MHC-I is currently unknown, and we sought to examine the affinities of two highly related receptors, an activating and an inhibitory Ly49 receptor, for their shared MHC-I ligands. The ectodomain of inhibitory Ly49G of the BALB/c mouse strain is highly similar to the Ly49W activating receptor in the nonobese diabetic (NOD) mouse. Recombinant soluble Ly49G and W were expressed, refolded, and analyzed for binding affinity with MHC-I by surface plasmon resonance. We found that Ly49G and Ly49W bound with similar affinity to the same MHC-I molecules. These results are a first determination of an activating Ly49 receptor affinity for MHC-I and show that, unlike prior results obtained with activating and inhibitory KIR receptors, functional homologues to Ly49 receptors, activating and inhibitory Ly49, can recognize common MHC-I ligands, with similar affinities.  相似文献   

15.
The mammalian natural killer gene complex (NKC) contains several families of type II transmembrane C-type lectin-like receptors (CLRs) that are best known for their involvement in the detection of virally infected or transformed cells, through the recognition of endogenous (or self) proteinacious ligands. However, certain CLR families within the NKC, particularly those expressed by myeloid cells, recognize structurally diverse ligands and perform a variety of other immune and homoeostatic functions. One such family is the 'Dectin-1 cluster' of CLRs, which includes MICL, CLEC-2, CLEC12B, CLEC9A, CLEC-1, Dectin-1 and LOX-1. Here, we review each of these CLRs, exploring our current understanding of their ligands and functions and highlighting where they have provided new insights into the underlying mechanisms of immunity and homeostasis.  相似文献   

16.
Bronchial epithelial cells represent the first line of defense against invading airborne pathogens. They are important contributors to innate mucosal immunity and provide a variety of antimicrobial effectors. However, mucosal surfaces are prone to contact with pathogenic, as well as nonpathogenic microbes, and therefore, immune recognition principles have to be tightly controlled to avoid uncontrolled permanent activation. TLRs have been shown to recognize conserved microbial patterns and to mediate inducible activation of innate immunity. Our experiments demonstrate that bronchial epithelial cells express functional TLR1-6 and TLR9 and thus make use of a common principle of professional innate immune cells. Although it was observed that TLR2 ligands dependent on heterodimeric signaling either with TLR1 or TLR6 were functional, other ligands like lipoteichoic acid were not. Additionally, it was found that bronchial epithelial cells could be stimulated only marginally by Gram-positive bacteria bearing known TLR2 ligands while Gram-negative bacteria were easily recognized. This correlated with low expression of TLR2 and the missing expression of the coreceptor CD36. Transgenic expression of both receptors restored responsiveness to the complete set of TLR2 ligands and Staphylococcus aureus. Additional gene-array experiments confirmed hyporesponsiveness to this bacterium while Pseudomonas aeruginosa and respiratory syncytial virus induced common, as well as pathogen-specific, sets of genes. The findings indicate that bronchial epithelium regulates its sensitivity to recognize microbes by managing receptor expression levels. This could serve the special needs of controlled microbial recognition in mucosal compartments.  相似文献   

17.
Coming to grips with integrin binding to ligands   总被引:1,自引:0,他引:1  
Integrins are alphabeta heterodimeric cell-surface receptors that are vital to the survival and function of nucleated cells. They recognize aspartic-acid- or a glutamic-acid-based sequence motifs in structurally diverse ligands. Integrin recognition of most ligands is divalent cation dependent and conformationally sensitive. In addition to this common property, there is an underlying binding specificity between integrins and ligands for which there has been no structural basis. The recently reported crystal structures of the extracellular segment of an integrin in its unliganded state and in complex with a prototypical Arg-Gly-Asp (RGD) ligand have provided an atomic basis for cation-mediated binding of aspartic-acid-based ligands to integrins. They also serve as a basis for modelling other integrins in complex with larger physiologic ligands. These models provide new insights into the molecular basis for ligand binding specificity in integrins and its regulation by activation-driven tertiary and quaternary changes.  相似文献   

18.
The killing by natural killer (NK) cells is regulated by inhibitory, costimulatory, and activating receptors. The inhibitory receptors recognize mainly major histocompatibility complex (MHC) class I molecules, while the activating NK receptors recognize stress-induced ligands and viral products. Thus, changes in the expression of the various inhibitory and activating ligands will determine whether target cells will be killed or protected. Here, we demonstrate that after influenza virus infection the binding of the two NK inhibitory receptors, KIR2DL1 and the LIR1, to the infected cells is specifically increased. The increased binding occurs shortly after the influenza virus infection, prior to the increased recognition of the infected cells by the NK activating receptor, NKp46. We also elucidate the mechanism responsible for this effect and demonstrate that, after influenza virus infection, MHC class I proteins redistribute on the cell surface and accumulate in the lipid raft microdomains. Such redistribution allows better recognition by the NK inhibitory receptors and consequently increases resistance to NK cell attack. In contrast, T-cell activity was not influenced by the redistribution of MHC class I proteins. Thus, we present here a novel mechanism, developed by the influenza virus, of inhibition of NK cell cytotoxicity, through the reorganization of MHC class I proteins on the cell surface.  相似文献   

19.
Targeting large transmembrane molecules, including receptor tyrosine kinases, is a major pharmacological challenge. Specific oligonucleotide ligands (aptamers) can be generated for a variety of targets through the iterative evolution of a random pool of sequences (SELEX). Nuclease-resistant aptamers that recognize the human receptor tyrosine kinase RET were obtained using RET-expressing cells as targets in a modified SELEX procedure. Remarkably, one of these aptamers blocked RET-dependent intracellular signaling pathways by interfering with receptor dimerization when the latter was induced by the physiological ligand or by an activating mutation. This strategy is generally applicable to transmembrane receptors and opens the way to targeting other members of this class of proteins that are of major biomedical importance.  相似文献   

20.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号