首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clone bifunctional vectors in streptomycetes, it was necessary to define the restriction-modification system ofStreptomyces flavopersicus. Plasmid DNA from bifunctional vectors pIJ699 and pXED3-13, isolated fromE. coli strains with different methylation systems:E. coli DH5α (dam + dcm +),E. coli MB5386(dam dcm), E. coli CB51 (dam dcm +),E. coli NM544 (dam + dcm), was used for transformation of protoplasts from strainS. flavopersicus. Restriction ofdcm-methylated DNA fromS. flavopersicus was established. As a host in the intermediate cloning strainE. coli NM544 (dam + dcm) should be used, as thedcm-transmethylase-dependent strainS. flavopersicus does not process DNA from this strain.  相似文献   

2.
Location of DNA methylation genes on the Escherichia coli K-12 genetic map   总被引:73,自引:0,他引:73  
Summary The genes responsible for DNA adenine methylation (dam) and DNA cytosine methylation (dcm) have been mapped on the E. coli K-12 genetic map. The dam gene is situated at min 65 and the gene order cysG-(trpS, dam)-aro B inferred. The dcm gene is located at min 37.5 and the gene order is supD-dcm-flaA1. In F merodiploids, the dam and dcm alleles are recessive.  相似文献   

3.
The efficiency of GUS (-Glucuronidase) gene expression in embryogenic callus and young leaflets of mature and seedling palm after microprojectile bombardment with five constructs (pEmuGN, pAHC25, pAct1-F4, pGH24 and pBARGUS) was evaluated to identify the most suitable promoter(s) to use in transformation attempts in oil palm. Expression of the GUS gene driven by theEmu, Ubi1, Act1 35S orAdh1 was assayed, both histochemically and fluorometrically, from a total of 200 plates of tissues in eight independent experiments two days after bombardment. A completely randomized experimental design was used for each experiment, and the data analysed by ANOVA and Duncan's Multiple Range Test. The expression level of GUS driven by theEmu orUbi1 promoters was significantly higher than that of the Act], 35S and Adhl promoters in many experiments, and that of theAdhl was significantly lower than those of the other four promoters. Both histochemical and fluorometric data indicate that in embryogenic callus, the expression of theEmu promoter was higher than that of theUbi1 whereas in young leaflets from mature palm the Ubi1 expression was stronger. The performances of the five promoters were also tested in tobacco callus using a fluorometric GUS assay. The activity of the 35S promoter was highest, and significantly different from that of all the other promoters except theEmu, and that of theAct1 promoter was lowest. These results indicate that either theUbil orEmu promoter should facilitate the expression of desired genes in oil palm and aid in development of an efficient stable transformation system.Abbreviations GUS -Glucuronidase - EC embryogenic callus - YLMP young leaflet from mature palm - YLSP young leaflet from seedling palm - MU methyl umbelliferone - MUG 4-methyl--D-glucuronide - X-glue 5-bromo-4-chloro-3-indoyl-glucuronide - Ubil maize ubiquitin 1 - Actl rice actin 1 - Adh1 maize alcohol dehydrogenase 1 - Emu a recombinant truncated maize alcohol dehydrogenase 1 - ANOVA Analysis of variance - DMRT Duncan's Multiple Range Test Communicated by W A. Parrott  相似文献   

4.
This study focused on finding a novel sensitive method to determine the methylation modification at DNA dam (GATC) sites in Escherichia coli. A new plasmid which contained three GATC sites recognized by restriction enzyme BclI and one GAATTC site recognized by EcoRI was transformed into E. coli stains AB1157(dam +) and GM2929(dam ) respectively. Then the plasmid DNA was digested by restriction enzyme BclI(T*GATCA), which was sensitive to methylation. The results showed that the plasmid derived from AB1157 was not digested while that from GM2929 was, for the methylation level of the former was high while the latter was low. So by detecting the methylation of plasmid transferred into the strain, we could determine whether methylaion existed at DNA dam (GATC) site in E. coli. This method was effective and rapid; moreover, the digested fragments were not dispersive. It also made a basis for the detection of whether methylation occurred in mode beings by low-energy ion beam. The article is published in the original.  相似文献   

5.
A series of promoter-GUS fusion constructs containing a portion of the rice triosephosphate isomerase (tpi) promoter, the firsttpi intron, and the gene encoding bacterial -glucuronidase (GUS) were made. These constructs were electroporated into rice protoplasts and transient expression was monitored. Inclusion of the first intron from the ricetpi gene enhanced expression of the GUS gene from thetpi promoter when it was placed 5 of the GUS gene. When thetpi intron was placed in the 3-untranslated region no enhancement of GUS gene expression was observed, indicating the importance of position in intron-mediated enhancement of gene expression.  相似文献   

6.
Mismatches in DNA occur either due to replication error or during recombination between homologous but non-identical DNA sequences or due to chemical modification of bases. The mismatch in DNA, if not repaired, result in high spontaneous mutation frequency. The repair has to be in the newly synthesized strand of the DNA molecule, otherwise the error will be fixed permanently. Three distinct mechanisms have been proposed for the repair of mismatches in DNA in prokaryotic cells and gene functions involved in these repair processes have been identified. The methyl-directed DNA mismatch repair has been examined inVibrio cholerae, a highly pathogenic gram negative bacterium and the causative agent of the diarrhoeal disease cholera. The DNA adenine methyltransferase encoding gene (dam) of this organism which is involved in strand discrimination during the repair process has been cloned and the complete nucleotide sequence has been determined.Vibrio cholerae dam gene codes for a 21.5 kDa protein and can substitute for theEscherichia coli enzyme. Overproduction ofVibrio cholerae Dam protein is neither hypermutable nor lethal both in Escherichia coli andVibrio cholerae. WhileEscherichia coli dam mutants are sensitive to 2-aminopurine,Vibrio cholerae 2-aminopurine sensitive mutants have been isolated with intact GATC methylation activity. The mutator genesmutS andmutL involved in the recognition of mismatch have been cloned, nucleotide sequence determined and their products characterized. Mutants ofmutS andmutL ofVibrio cholerae have been isolated and show high rate of spontaneous mutation frequency. ThemutU gene ofVibrio cholerae, the product of which is a DNA helicase II, codes for a 70 kDa protein. The deduced amino acid sequence of themutU gene hs all the consensus helicase motifs. The DNA cytosine methyltransferase encoding gene (dam) ofVibrio cholerae has also been cloned. Thedcm gene codes for a 53 kDa protein. This gene product might be involved in very short patch (VSP) repair of DNA mismatches. The vsr gene which is directly involved in VSP repair process codes for a 23 kDa protein. Using these information, the status of DNA mismatch repair inVibrio cholerae will be discussed.  相似文献   

7.
Using a battery of methylation-sensitive restriction enzymes, cytosine methylation at 23 sites in a 7.6 kb region surrounding the Alcohol dehydrogenase-1 (Adh1) gene was measured in DNA prepared from immature maize cobs. Both the 5 upstream region and the entire coding region were hypomethylated in the two alleles examined. Methylation in Adh1 is independent of changes in Mutator transposable element methylation. The role of DNA methylation in Adh1 gene regulation is discussed.  相似文献   

8.
To investigate impediments to plasmid transformation inBrevibacterium flavum BF4 andB. lactofermentum BL1, cell surface barriers were determined by measuring growth inhibition whilst enzymatic barriers were determined by comparing DNA methylation properties.B. lactofermentum was more sensitive to growth inhibition by glycine thanB. flavum. Release of cellular proteins during sonication was more rapid forB. lactofermentum than forB. flavum. Plasmid DNA (pCSL17) isolated fromB. flavum transformed recipient McrBC+ strains ofEscherichia coli with lower efficiency than McrBC.McrBC digestion of this DNA confirmed thatB. flavum contain methylated cytidines in the target sequence ofMcrBC sequences butB. lactofermentum contained a different methylation pattern. DNA derived from theB. lactofermentum transformed recipient EcoKR+ strains ofE. coli with lower efficiency than EcoKR, indicating the presence of methylated adenosines in the target sequence of EcoK sequences. The present data describe the differences in the physical and enzymatic barriers between two species of corynebacteria and also provide some insight into the successful foreign gene expression in corynebacteria.  相似文献   

9.
Plasmid pMQ3, carrying thedam gene ofEscherichia coli on a 6.1 Kb fragment, shows a tenfold increase in relative DNA adenine methylase activity, while plasmid pdam118, with a 1.14 Kbdam insert, shows only a twofold increase, although both plasmids were derived from plasmid pLC13–42. Since a copy number effect did not seem to be the cause of this difference, we have subcloned pMQ3 in order to determine whether the additional chromosomal DNA present in this plasmid is responsible for the enhancement of methylase activity. We show that the 346 base pairs upstream ofdam contain sequences necessary for expression. DNA sequence analysis has revealed that in pdam118 only the 118 bases 5-prime to thedam gene are present in other constructs and that the additional upstream material is pBR322 DNA. This shows that pdam118 carries a DNA duplication.  相似文献   

10.
A short (43-bp) A/T-rich stretch of DNA located in The intergenic region between thebaiA2 andbaiF genes fromEubacterium sp. strain VPI 12708 was amplified by polymerase chain reaction (PCR) and inserted in front of the Shine-Dalgarno (SD) sequences of three inefficiently-expressedEubacterium sp. strain VPI 12708 genes cloned inEschcrichia coli plasmids. Insertion of this A/T-rich cassette increased gene expression in all cases tested. Deletion of part of the A/T-rich region from abaiF clone in pUC19 resulted in decreased gene expression. Synthesis of specific mRNA was increased with addition of the A/T-rich cassette to constructs containing thebaiC gene from Eubacterium sp. strain VPI 12708, but mRNA synthesis was not significantly changed in cells containing plasmid constructs with thebaiF andbaiG genes. Enhanced translation resulting from a decrease in mRNA secondary structure in the ribosome binding site region is discussed as a possible reason for increased gene expression with the A/T-rich cassette.  相似文献   

11.
Summary DNA containing the Escherichia coli dam gene and sequences upstream from this gene were cloned from the Clarke-Carbon plasmids pLC29-47 and pLC13-42. Promoter activity was localized using pKO expression vectors and galactokinase assays to two regions, one 1650–2100 bp and the other beyon 2400 bp upstream of the dam gene. No promoter activity was detected immediately in front of this gene; plasmid pDam118, from which the nucleotide sequence of the dam gene was determined, is shown to contain the pBR322 promoter for the primer RNA from the pBR322 rep region present on a 76 bp Sau3A fragment inserted upstream of the dam gene in the correct orientation for dam expression. The nucleotide sequence upstream of dam has been determined. An open reading frame (ORF) is present between the nearest promoter region and the dam gene. Codon usage and base frequency analysis indicate that this is expressed as a protein of predicted size 46 kDa. A protein of size close to 46 kDa is expressed from this region, detected using minicell analysis. No function has been determined for this protein, and no significant homology exist between it and sequences in the PIR protein or GenBank DNA databases. This unidentified reading frame (URF) is termed urf-74.3, since it is an URF located at 74.3 min on the E. coli chromosome. Sequence comparisons between the regions upstream of urf-74.3 and the aroB gene show that the aroB gene is located immediately upstream of urf-74.3, and that the promoter activity nearest to dam is found within the aroB structural gene. This activity is relatively weak (about 15% of that of the E. coli gal operon promoter). The promoter activity detected beyond 2400 bp upstream of dam is likely to be that of the aroB gene, and is 3 to 4 times stronger than that found within the aroB gene. Three potential DnaA binding sites, each with homology of 8 of 9 bp, are present, two in the aroB promoter region and one just upstream of the dam gene. Expression through the site adjacent to the dam gene is enhanced 2-to 4-fold in dnaA mutants at 38°C. Restriction site comparisons map these regions precisely on the Clarke-Carbon plasmids pLC13-42 and pLC29-47, and show that the E. coli ponA (mrcA) gene resides about 6 kb upstream of aroB.  相似文献   

12.
Transgenic mice carrying the 3-hydroxy-3-methylglutarylCoA reductase (HMG) promoter driving theEscherichia coli -galactosidase (lacZ) gene did not display the expected ubiquitous and constitutive expression inHMG-lacZ transgenic mice. The same promoter is however able to drive ubiquitous expression of the chloramphenicol acetyltransferase (cat) gene. Two lines of doubleHMG-lacZ andHMG-cat transgenic mice were obtained in which the two constructs were integrated at the same genomic sites. These mice expressed both reporter genes, but exclusively in the testes. These results suggest that thelacZ sequence might interfere negatively with the expression of the adjacentHMG-cat transgene.  相似文献   

13.
Dam-mediated adenine methylation at GATC sites can interfere with gene expression. By use oflacZ fusion technology, the efficiency oftrpR andtrpS promoters (which contain a GATC site) and oftrp (the target of TrpR repressor) was analyzed indam + anddam backgrounds. In exponentially growing cells, thedam mutation leads to an increased activity oftrpR promoter but does not affecttrpS ortrp promoters. The Dam-mediated induction oftrpR was, however, found to be repressed bytrpR-mediated autoregulation. In contrast,trp-lacZ directed-galactosidase activity was increased at least sixfold indam cells in late logarithmic growth phase. Indam + cells, expression oftrp-lacZ was similarly late-growth-phase induced, albeit to a reduced extent. Hence, we propose that enhancement of growth phase-dependent gene induction constitutes a previously unidentified trait ofdam mutation. This finding is discussed in the context of the pleiotropic phenotype ofdam mutation.  相似文献   

14.
Ganoderma lucidum is a well-known and important medicinal mushroom, but its genetic modification has not been reported. We developed an efficient procedure for isolation and regeneration of protoplasts fromG. lucidum. To construct a vector for high-level expression of heterologous genes inG. lucidum, the 1.4-kb regulatory region of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD) was isolated from the genomic DNA ofLentinus edodes, and theGPD promoter was fused to the β-glucuronidase (GUS) and bialaphos resistance (bar) genes. Using the resulting construct, p301-bG1, an efficient transformation system based on electroporation was established forG. lucidum. GUS expression was observed among transformants conferring bialaphos resistance, indicating that theL. edodes GPD promoter can be used for expression of exogenous genes inG. lucidum. We also studied green fluorescent protein (GFP) as another reporter for transformation ofG. lucidum. TheL. edodes GPD promoter was fused respectively to theGFP andbar genes, and the resulting construct, p301-bg, was introduced intoG. lucidum. StableGFP expression in transformants was detectable by fluorescence microscopy, suggesting the suitability ofGFP as a reporter system in transformation of this mushroom. This is the first report of an efficient transformation system forG. lucidum using different reporters, paving the way for genetic modification of this famous medicinal mushroom.  相似文献   

15.
Summary TheAntirrhinum majus Tam3 element was introduced intoArabidopsis thaliana protoplasts and plants in order to assess the influence of anin vitro culture phase such as protoplasts and callus culture on the mobility of this transposable element in this plant species. The constructs used contained theTam3 element inserted in between the CaMV 35S promoter and thegus- orhpt-coding region, allowing a direct selection of excision candidates. From the different approaches used, only a long-term callus culture allowed us to detectTam3 activity. NoTam3 activity could be detected in protoplasts or protoplast-derived microcolonies. Our data are compared with those previously reported forTam3 in tobacco and petunia.  相似文献   

16.
Transient GUS (-glucuronidase) expression was visualized in cell suspensions of Triticum aestivum, Zea mays, Pennisetum glaucum, Saccharum officinarum, Pennisetum purpureum and Panicum maximum after microprojectile bombardment with pBARGUS and pAHC25 plasmid DNAs. pBARGUS contains the GUS (UidA) gene coding region driven by the Adh1 promoter and the Adh1 intron 1, as well as the BAR gene coding region driven by the CaMV 35S promoter and the Adh1 intron 1. pAHC25 contains the GUS and BAR gene coding regions driven by the maize ubiquitin promoter, first exon and first intron (Ubi1). The effectiveness of the constructs was first compared in cell suspension cultures by counting blue expression units (b.e.u.). The expression of construct pAHC25 ranged from 3 to 50 fold greater than pBARGUS in different species. In addition, the two plasmids were quantitatively compared in Triticum aestivum and Zea mays by using the more sensitive GUS fluorometric assay to determine the amount of methylumbellyferride (MU) produced. There was more than a 30 fold increase in MU production with pAHC25 than with pBARGUS in the wheat suspension, while the maize suspension showed only a 2.5 fold increase with the pAHC25 construct. Transient GUS expression was also visualized in immature embryos of Pennisetum glaucum following bombardment with pBARGUS and pAHC25 DNA. Expression of plasmid pAHC25 was twice as high as pBARGUS. A comparison of two DNA/gold preparation methods, as well as repeated sonications of the DNA/gold mixture, had no effect on the number of b.e.u.  相似文献   

17.
Gene constructs that contained the -glucuronidase (GUS) gene under the control of a pollen-specific Zm13 promoter from maize and a LAT52 promoter from tomato were introduced by electroporation into pollen protoplasts isolated from bicellular pollen grains of Lilium longiflorum. After 20 h in culture, the pollen protoplasts exhibited the apparent expression of GUS in a fluorometric assay. The GUS activity induced under the control of the Zm13 promoter was over 10 000 times higher than activity in the control (with no DNA or without electroporation). By contrast, the GUS gene was nearly silent in the lily microspore protoplasts and generative cell protoplasts. The GUS activity driven by the Zm13 and LAT52 promoters was also detected by a cytochemical assay. The frequency of blue-staining pollen protoplasts was about 70% in the case of the Zm13 promoter. The efficiency of gene transfer by electroporation was much higher than by particle bombardment. This protoplast-specific electroporation system is suitable for rapid and reliable examination of pollen-specific promoters, being as good as the particle bombardment system.  相似文献   

18.
Chaturvedi AK  Mishra A  Tiwari V  Jha B 《Gene》2012,498(2):280-287
Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam+) and GM33 (?dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA+ strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ?gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA.  相似文献   

19.
This paper presents a method of Agrobacterium-mediated transformation for two diploid breeding lines of potato, and gives a detailed analysis of reporter gene expression. In our lab, these lines were also used to obtain tetraploid somatic hybrids. We tested four newly prepared constructs based on the pGreen vector system containing the selection gene nptII or bar under the 35S or nos promoter. All these vectors carried gus under 35S. We also tested the pDM805 vector, with the bar and gus genes respectively under the Ubi1 and Act1 promoters, which are strong for monocots. The selection efficiency (about 17%) was highest in the stem and leaf explants after transformation with pGreen where nptII was under 35S. About half of the selected plants were confirmed via PCR and Southern blot analysis to be transgenic and, depending on the combination, 0 to 100% showed GUS expression. GUS expression was strongest in multi-copy transgenic plants where gus was under Act1. The same potato lines carrying multi-copy bar under Ubi1 were also highly resistant to the herbicide Basta. The suggestion of using Agrobacterium-mediated transformation of diploid lines of potato as a model crop is discussed herein.  相似文献   

20.
Industrial plasmid DNA manufacturing processes are needed to meet the quality, economy, and scale requirements projected for future commercial products. We report development of a modified plasmid fermentation copy number induction profile that increases gene vaccination/therapy vector yields up to 2,600 mg/L. We determined that, in contrast to recombinant protein production, secretion of the metabolic byproduct acetate into the media had only a minor negative effect on plasmid replication. We also investigated the impact of differences in epigenetic dcm methylase‐directed cytosine methylation on plasmid production, transgene expression, and immunogenicity. While Escherichia coli plasmid production yield and quality are unaffected, dcm− versions of CMV and CMV‐HTLV‐I R promoter plasmids had increased transgene expression in human cells. Surprisingly, despite improved expression, dcm− plasmid is less immunogenic. Our results demonstrate that it is critical to lock the plasmid methylation pattern (i.e., production strain) early in product development and that dcm− strains may be superior for gene therapy applications wherein reduced immunogenicity is desirable and for in vitro transient transfection applications such as AAV production where improved expression is beneficial. Biotechnol. Bioeng. 2011;108: 354–363. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号