首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

2.
In the course of our study on the function of sarcoplasmic reticulum (SR) in skeletal muscle, the stimulatory action of phosphatidylinositol 4,5-bisphosphate (PIP2) on the Ca2+ release from SR was demonstrated by using chemically skinned fibers and fragmented SR vesicles. PIP2 induced a tension spike followed by sustained contraction in skinned fibers. PIP2 enhanced the caffeine-induced Ca2+ release from SR vesicles at low concentrations and triggered Ca2+ release by itself at high concentrations. PIP2 also enhanced 45Ca2+ efflux from SR vesicles. However, inositol 1,4,5-triphosphate never produced these effects. The Ca2+-releasing action of PIP2 was only weakly affected by ruthenium red or procaine. These observations suggest that PIP2 activates an SR Ca2+ release channel whose properties are different from those of the Ca2+-induced Ca2+ release channel.  相似文献   

3.
Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.  相似文献   

4.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

5.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

6.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

7.
The same level of passively loaded Ca2+ was observed both in the heavy (enriched in terminal cisternae) and light (enriched in longitudinal reticulum) sarcoplasmic reticulum (SR) fractions. The level of passively loaded Ca2+ of the both SR fractions decreased in the presence of 150 mM K+. However the rate and extent of Ca2+ release was greater from heavy SR fraction. The rate of Ca2+ release under conditions of antiport of K+, Na+, choline+ and gluconate-, Cl-, SCH- increased proportion with their permeability through the SR membrane. The initial rate of Ca2+ release also became higher under equal concentration of monovalent cation chloride both inside and outside the SR vesicles. Apparently, in this case Ca2+ release occurs through Ca-channels which are open at a membrane potential.  相似文献   

8.
The effects of caffeine and procaine on the Ca2+-gated cation channel in sarcoplasmic reticulum (SR) vesicles were studied by measuring choline influx. The choline influx in SR vesicles was measured by following the change in light scattering intensity using a stopped flow apparatus. From the kinetic analysis of the rate of choline influx, the following results were obtained. (1) The rate of choline influx was enhanced when Ca2+ bound to the Ca2+-receptor site of the Ca2+-gated cation channel. (2) Caffeine enhanced the choline influx by increasing only the affinity of Ca2+ for the receptor site of the channel and thus regulated the equilibrium between open and closed states of the channel. The affinity increased about 14-fold upon caffeine binding. The dissociation constant of caffeine was 10 mM. (3) In contrast, procaine itself blocked the choline influx mediated by the Ca2+-gated cation channel. The blockade followed a single-site titration curve with a Ca2+-dependent dissociation constant of 0.44 mM at 2 x 10(-6) M Ca2+. The Ca2+-dependence was explained by assuming that procaine would bind to the inhibitory site only when the channel was open. (4) Procaine also inhibited the choline influx enhanced by caffeine. The blockade could be explained on the basis of the above kinetic model.  相似文献   

9.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

10.
The effects of nucleotides on the Ca2+-gated cation channel in sarcoplasmic reticulum (SR) vesicles were studied by measuring choline influx. The choline influx was measured by following the change in scattered light intensity using the stopped flow technique. ATP enhanced the Ca2+-induced choline influx. The activation followed a single-site titration curve with a dissociation constant of 1.0 +/- 0.5 mM, independent of the Ca2+ concentration. ATP seems to increase the pore radius or number of channels without affecting the gating mechanism of the Ca2+-gated cation channel. ADP, AMP, and adenine enhanced the choline transport in a manner similar to ATP, but cAMP, ITP, UTP, CTP, and GTP did not. The apparent dissociation constants and the maximal activations were as follows: ATP 1.0 mM, 28-fold; ADP 0.9 mM, 18-fold; AMP 0.6 mM, 7-fold, and adenine 0.4 mM, 4-fold. Adenine and AMP behaved as a competitive inhibitor for the activation by ATP. These results are consistent with the Ca2+-induced Ca2+ release observed in skinned muscle fiber and isolated SR.  相似文献   

11.
The role of sarcoplasmic reticulum (SR) in malignant hyperthermia (MH) was studied using the heavy microsomal fraction prepared from semitendinosus muscles of both normal and genetically MH-susceptible pigs. In the presence of ATP, SR was loaded with 70 nmol Ca2+/mg SR protein. Under these conditions, MH-SR demonstrated Ca2+-induced Ca2+ release (Ca-ICaR) and halothane-induced Ca2+ release (halothane-ICaR; halothane concentrations as low as 10 microM). Normal SR did not demonstrate these release phenomena. Dantrolene inhibited the halothane-ICaR, but did not inhibit the Ca-ICaR. Ruthenium red and tetracaine inhibited both types of Ca2+ release. From the measurement of passive Ca2+ efflux, it was shown that dantrolene did not affect the Ca2+ permeability of the SR itself, but suppressed only the halothane-induced increment of the permeability. The membrane order parameter of the SR, as measured by the spin-probe EPR technique, indicated that halothane disordered the lipid bilayer of MH-SR to a greater extent than it did of normal SR. This halothane disordering effect on MH-SR was antagonized by dantrolene. Ruthenium red and tetracaine did not antagonize the halothane disordering effect. These results raise the possibility that halothane could disturb the structure of the lipoprotein complex in MH-SR in such a way that it could open the Ca2+-release channels. The Ca2+ thus released further opens the channel through the Ca-ICaR mechanism in a positive feedback fashion, thus triggering the MH syndrome. The efficacy of dantrolene in ameliorating the MH syndrome might be related to the inhibition of this halothane effect.  相似文献   

12.
The photooxidizing xanthene dye rose bengal (10 nM to 1 microM) stimulates rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum vesicles. Following fusion of sarcoplasmic reticulum (SR) vesicles to an artificial bilayer, reconstituted Ca2+ channel activity is stimulated by nanomolar concentrations of rose bengal in the presence of a broad-spectrum light source. Rose bengal does not appear to affect K+ channels present in the SR. Following reconstitution of the sulfhydryl-activated 106-kDa Ca2+ channel protein into a bilayer, rose bengal activates the isolated protein in a light-dependent manner. Ryanodine at a concentration of 10 nM is shown to lock the 106-kDa channel protein in a subconductance state which can be reversed by subsequent addition of 500 nM rose bengal. This apparent displacement of bound ryanodine by nanomolar concentrations of rose bengal is also directly observed upon measurement of [3H]ryanodine binding to JSR vesicles. These observations indicate that photooxidation of rose bengal causes a stimulation of the Ca2+ release protein from skeletal muscle sarcoplasmic reticulum by interacting with the ryanodine binding site. Furthermore, similar effects of rose bengal on isolated SR vesicles, on single channel measurements following fusion of SR vesicles, and following incorporation of the isolated 106-kDa protein strongly implicates the 106-kDa sulfhydryl-activated Ca2+ channel protein in the Ca2+ release process.  相似文献   

13.
Micromolar concentrations of cupric ion (Cu2+) and mercaptans such as cysteine, cysteamine, and homocysteine trigger large and rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. At the concentrations used, Cu2+ alone does not induce Ca2+ release nor does cysteine alone; both are required to induce Ca2+ release from SR. Cu2+ is known to catalyze the autooxidation of cysteine to its disulfide form cystine; Cu2+/mercaptan-induced Ca2+ release appears to be caused by Cu2+-catalyzed formation of a mixed disulfide between the exogenous mercaptan and a critical sulfhydryl on a transmembrane protein. In the oxidized state the SR is highly permeable to Ca2+. Supporting evidence for this interpretation is as follows. The order of Ca2+-releasing reactivity of the mercaptans is the same as the order in which these compounds undergo oxidation to disulfide forms in the presence of Cu2+. Ca2+ efflux induced by cysteine and Cu2+ can be reversed by the addition of the disulfide reducing agent dithiothreitol. Hypochlorous acid and plumbagin, both potential sulfhydryl oxidants, induce rapid Ca2+ efflux from SR vesicles; in addition, Cu2+, which catalyzes H2O2 oxidation of cysteine, enhances H2O2-induced release. Oxidation-induced Ca2+ release from SR can be partially reversed or blocked by ruthenium red or the local anesthetics procaine and tetracaine. The Ca2+ efflux rates are strongly Mg2+ dependent and are significantly higher in heavy SR than in light SR. These data suggest that the Ca2+ efflux thus induced is via the "Ca2+ release channel" and that the oxidation state of a critical sulfhydryl group on this protein may be the principal means by which the Ca2+ permeability of the SR is regulated in vivo.  相似文献   

14.
The effects of SH reagents on Ca2+ release from sarcoplasmic reticulum (SR) vesicles were examined by the tracer method using 45Ca2+. Among the various SH reagents tested, 4,4'-dithiodipyridine (PDS) was found to induce Ca2+ release most specifically from the heavy fraction of SR vesicles. Further, the following results were obtained. (i) PDS bound covalently to proteins in the SR membrane and induced Ca2+ release. (ii) The Ca2+ release was further enhanced by ATP and caffeine, but inhibited by procaine, ruthenium red and various divalent cations. (iii) PDS enhanced the Ca2+ release in the whole range of Ca2+ concentrations tested. (iv) Choline permeability was also enhanced by PDS. Further, the electrical conductance of the Ca2+-induced Ca2+ release channels was studied by incorporating them into lipid bilayers and it was found that PDS increased the probability of opening of the channels. These results suggest that PDS binds to certain SH groups of the Ca2+-induced Ca2+ release channels in the SR membrane and thus induces Ca2+ release.  相似文献   

15.
The binding location for the hydrophobic ions tetraphenylphosphonium (TPP+) and tetraphenylboron (TPB-) was studied in sonicated phosphatidylcholine (PC) vesicles by measuring time-dependent and steady-state intermolecular 1H nuclear Overhauser effects (NOE's). Intermolecular cross-relaxation was also investigated by two-dimensional NOE spectroscopy. Information on the distance and order parameter dependence of the NOE's was obtained from a simple simulation of the NOE's in the alkyl chain region. Taken together, the NOE data and the simulation provide strong evidence that TPB- and TPP+, at low concentrations (less than or equal to 10 mol%), are localized in the alkyl chain region of the bilayer. At these lower concentrations of TPP+ or TPB-, no significant effect on lipid 13C T1 or T2 relaxation rates is detected. The proposed location is consistent with the expected free energy profiles for hydrophobic ions and with the carbonyl oxygens or interfacial water as the source of the membrane dipole potential. At higher ion/lipid ratios (greater than or equal to 20 mol%), TPB-/lipid NOE's increase. This results from a specific association of TPB- with the choline head group.  相似文献   

16.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to the S-S bond such as 2,2'-dithiodipyridine (2,2'-DTDP), 4,4'-dithiodipyridine, and N-succinimidyl 3(2-pyridyldithio)propionate (SPDP) trigger Ca2+ release from sarcoplasmic reticulum (SR) vesicles. They are known to specifically oxidize free SH sites via a thiol-disulfide exchange reaction with the stoichiometric production of thiopyridone. Thus, the formation of a mixed S-S bond between an accessible SH site on an SR protein and a RDS causes large increases in SR Ca2+ permeability. Reducing agents, glutathione (GSH) or dithiothreitol reverse the effect of RDSs and permit rapid re-uptake of Ca2+ by the Ca2+, Mg2+-ATPase. The RDSs, 2,2'-DTDP, 4,4'-dithiodipyridine and SPDP displaced [3H]ryanodine binding to the Ca2+-receptor complex at IC50 values of 7.5 +/- 0.2, 1.5 +/- 0.1, and 15.4 +/- 0.1 microM, respectively. RDSs did not alter the rapid initial phase of Ca2+ uptake by the pump, stimulated ATPase activity, and induced release from passively loaded vesicles with nonactivated pumps; thus they act at a Ca2+ release channel and not at the Ca2+, Mg2+-ATPase. Efflux rates increased in 0.25-1.0 mM [Mg2+]free then decreased in 2-5 mM [Mg2+]free. Adenine nucleotides inhibited the oxidation of SHs on SR protein by RDSs and thus reduced Ca2+ efflux rates. However, once RDSs oxidized these SH sites and opened the Ca2+ release pathway, subsequent additions of nucleotides stimulated Ca2+ efflux. In skinned fibers, 2,2'-dithiodipyridine elicited rapid twitches which were blocked by ruthenium red. These results indicate that RDSs trigger Ca2+ release from SR by oxidizing a critical SH group, and thus provide a method to covalently label the protein(s) involved in causing these changes in Ca2+ permeability.  相似文献   

17.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

18.
The photooxidizing xanthene dye rose bengal is shown to induce rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. In the presence of light, nanomolar concentrations of rose bengal increase the Ca2+ permeability of the SR and stimulate the production of singlet oxygen (1O2). In the absence of light, no 1O2 production is measured. Under these conditions, higher concentrations of rose bengal (micromolar) are required to stimulate Ca2+ release. Furthermore, removal of oxygen from the release medium results in marked inhibition of the light-dependent reaction rate. Rose bengal-induced Ca2+ release is relatively insensitive to Mg2+. At nanomolar concentrations, rose bengal inhibits [3H]ryanodine binding to its receptor. beta,gamma-Methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, inhibits rose bengal-induced Ca2+ release and prevents rose bengal inhibition of [3H]ryanodine binding. Ethoxyformic anhydride, a histidine modifying reagent, at millimolar concentrations induces Ca2+ release from SR vesicles in a manner similar to that of rose bengal. The molecular mechanism underlying rose bengal modification of the Ca2+ release system of the SR appears to involve a modification of a histidyl residue associated with the Ca2+ release protein from SR. The light-dependent reaction appears to be mediated by singlet oxygen.  相似文献   

19.
Two types of divalent cation conducting channels from rabbit skeletal muscle sarcoplasmic reticulum (SR) were incorporated into planar lipid bilayers. A high conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy density SR fractions. The 100-pS channel was activated by adenine nucleotides and Ca2+ and inhibited by Mg2+ and ruthenium red. A 10-pS calcium and barium conducting channel could be incorporated into planar lipid bilayers from light, intermediate, and heavy density SR vesicles. 10-pS channel activity in bilayers was not dependent on cis Ca2+ and was only weakly dependent on adenine nucleotides. Ruthenium red at concentrations up to 1 mM had no effect and Mg2+ was only marginally effective in inhibiting macroscopic Ba2+ currents from this channel. Calcium releasing activity in intermediate and heavy density SR fractions was assayed according to a rapid quench protocol and compared with the results obtained in the bilayer. Results from this comparison indicate that the 10-pS channel is probably not involved in rapid Ca2+- and adenine nucleotide-induced Ca2+ release from isolated SR vesicles.  相似文献   

20.
The initial rate of passive Ca2+ influx into "heavy" and "light" fractions of sarcoplasmic reticulum (SR) vesicles increases in the presence of univalent cation chlorides. Stimulation of passive Ca2+ influx decreases in the following order: KCl + valinomycin-KSCN- + valinomycin greater than KSI = NaCl greater than choline chloride. K-gluconate + valinomycin and K-gluconate have no effect on the passive Ca2+ influx into SR vesicles. It is supposed that KCl-stimulation of passive Ca2+ influx into SR vesicles under conditions used may be caused by depolarization of the SR membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号