首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.  相似文献   

2.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

3.
Delta-crystallins are the major structural eye lens proteins of most birds and reptiles and are direct homologues of the urea cycle enzyme argininosuccinate lyase. There are two isoforms of delta-crystallin, delta Iota and delta IotaIota, but only delta IotaIota crystallin exhibits argininosuccinate lyase (ASL) activity. At the onset of this study, the structure of argininosuccinate lyase/delta IotaIota crystallin with bound inhibitor or substrate analogue was not available. Biochemical and X-ray crystallographic studies had suggested that H162 may function as the catalytic base in the argininosuccinate lyase/delta IotaIota crystallin reaction mechanism, either directly or indirectly through the activation of a water molecule. The identity of the catalytic acid was unknown. In this study, the argininosuccinate substrate was modeled into the active site of duck delta IotaIota crystallin, using the coordinates of an inhibitor-bound Escherichia coli fumarase C structure to orient the fumarate moiety of the substrate. The model served as a means of identifying active site residues which are positioned to potentially participate in substrate binding and/or catalysis. On the basis of the results of the modeling, site-directed mutagenesis was performed on several amino acids, and the kinetic and thermodynamic properties of each mutant were determined. Kinetic studies reveal that five residues, R115, N116, T161, S283, and E296, are essential for catalytic activity. Determination of the free energy of unfolding/refolding of wild-type and mutant delta II crystallins revealed that all constructs exhibit similar thermodynamic stabilities. During the course of this work, the structure of an inactive delta IotaIota crystallin mutant with bound substrate was solved [Vallee et al. (1999) Biochemistry 38, 2425-2434], which has allowed the kinetic data to be interpreted on a structural basis.  相似文献   

4.
Delta-crystallin is directly related to argininosuccinate lyase (ASL), and catalyzes the reversible hydrolysis of argininosuccinate to arginine and fumarate. Two delta-crystallin isoforms exist in duck lenses, delta1 and delta2, which are 94% identical in amino acid sequence. Although the sequences of duck delta2-crystallin (ddeltac2) and duck delta1-crystallin (ddeltac1) are 69 and 71% identical to that of human ASL, respectively, only ddeltac2 has maintained ASL activity. Domain exchange experiments and comparisons of various delta-crystallin structures have suggested that the amino acid substitutions in the 20's (residues 22-31) and 70's (residues 74-89) loops of ddeltac1 are responsible for the loss of enzyme activity in this isoform. To test this hypothesis, a double loop mutant (DLM) of ddeltac1 was constructed in which all the residues that differ between the two isoforms in the 20's and 70's loops were mutated to those of ddeltac2. Contrary to expectations, kinetic analysis of the DLM found that it was enzymatically inactive. Furthermore, binding of argininosuccinate by the DLM, as well as the ddeltac1, could not be detected by isothermal titration calorimetry (ITC). To examine the conformation of the 20's and 70's loops in the DLM, and to understand why the DLM is unable to bind the substrate, its structure was determined to 2.5 A resolution. Comparison of this structure with both wild-type ddeltac1 and ddeltac2 structures reveals that the conformations of the 20's and 70's loops in the DLM mutant are very similar to those of ddeltac2. This suggests that the five amino acid substitutions in domain 1 which lie outside of the two loop regions and which are different in the DLM, and ddeltac2, must be important enzymatically. The structure of the DLM in complex with sulfate was also determined to 2.2 A resolution. This structure demonstrates that the conformational changes of the 280's loop and domain 3, previously observed in ddeltac1, also occur in the DLM upon sulfate binding, reinforcing the hypothesis that these events may occur in the active ddeltac2 protein during catalysis.  相似文献   

5.
Tsai M  Koo J  Howell PL 《Biochemistry》2005,44(25):9034-9044
Delta-crystallin, the major soluble protein component in the avian eye lens, is homologous to argininosuccinate lyase (ASL). Two delta-crystallin isoforms exist in ducks, delta1- and delta2-crystallin, which are 94% identical in amino acid sequence. While duck delta2-crystallin (ddeltac2) has maintained ASL activity, evolution has rendered duck delta1-crystallin (ddeltac1) enzymatically inactive. Previous attempts to regenerate ASL activity in ddeltac1 by mutating the residues in the 20s (residues 22-31) and 70s (residues 74-89) loops to those found in ddeltac2 resulted in a double loop mutant (DLM) which was enzymatically inactive (Tsai, M. et al. (2004) Biochemistry 43, 11672-82). This result suggested that one or more of the remaining five amino acid substitutions in domain 1 of the DLM contributes to the loss of ASL activity in ddeltac1. In the current study, residues Met-9, Val-14, Ala-41, Ile-43, and Glu-115 were targeted for mutagenesis, either alone or in combination, to the residues found in ddeltac2. ASL activity was recovered in the DLM by changing Met-9 to Trp, and this activity is further potentiated in the DLM-M9W mutant when Glu-115 is changed to Asp. The roles of Trp-9 and Asp-115 were further investigated by site-directed mutagenesis in wild-type ddeltac2. Changing the identity of either Trp-9 or Asp-115 in ddeltac2 resulted in a dramatic drop in enzymatic activity. The loss of activity in Trp-9 mutants indicates a preference for an aromatic residue at this position. Truncation mutants of ddeltac2 in which the first 8, 9, or 14 N-terminal residues were removed displayed either decreased or no ASL activity, suggesting residues 1-14 are crucial for enzymatic activity in ddeltac2. Our kinetic studies combined with available structural data suggest that the N-terminal arm in ASL/delta2-crystallin is involved in stabilizing regions of the protein involved in substrate binding and catalysis, and in completely sequestering the substrate from the solvent.  相似文献   

6.
Delta-crystallin, the major soluble protein component of the avian and reptilian eye lens, is homologous to the urea cycle enzyme argininosuccinate lyase (ASL). In duck lenses there are two delta crystallins, denoted delta1 and delta2. Duck delta2 is both a major structural protein of the lens and also the duck orthologue of ASL, an example of gene recruitment. Although 94% identical to delta2/ASL in the amino acid sequence, delta1 is enzymatically inactive. A series of hybrid proteins have been constructed to assess the role of each structural domain in the enzymatic mechanism. Five chimeras--221, 122, 121, 211, and 112, where the three numbers correspond to the three structural domains and the value of 1 or 2 represents the protein of origin, delta1 or delta2, respectively--were constructed and thermodynamically and kinetically analyzed. The kinetic analysis indicates that only domain 1 is crucial for restoring ASL activity to delta1 crystallin, and that amino acid substitutions in domain 2 may play a role in substrate binding. These results confirm the hypothesis that only one domain, domain 1, is responsible for the loss of catalytic activity in delta1. The thermodynamic characterization of human ASL (hASL) and duck delta1 and delta2 indicate that delta crystallins are slightly less stable than hASL, with the delta1 being the least stable. The deltaGs of unfolding are 57.25, 63.13, and 70.71 kcal mol(-1) for delta1, delta2, and hASL, respectively. This result was unexpected, and we speculate that delta crystallins have adapted to their structural role by adopting a slightly less stable conformation that might allow for enhanced protein-protein and protein-solvent interactions.  相似文献   

7.
Intragenic complementation is a unique property of oligomeric enzymes with which to study subunit-subunit interactions. Complementation occurs when different subunits, each possessing distinct mutations that render the individual homomutant proteins inactive, interact to form a heteromutant protein with partial recovery of activity. In this paper, complementation events between human argininosuccinate lyase (ASL) and its homolog, duck delta2 crystallin, were characterized. Different active site mutants in delta2 crystallin complement by the regeneration of native-like active sites as reported previously for ASL. The complementarity of the ASL and delta2 crystallin subunit interfaces was illustrated by the in vivo formation of active hybrid tetramers from inactive ASL and inactive delta2 crystallin mutants. Subunits of both ASL and delta2 crystallin do not dissociate and reassociate in vitro at room temperature, even after 6 days of incubation, indicating that the multimerization interface is very strong. However, disruption of a salt bridge network in the tetrameric interface of delta2 crystallin caused a drastic acceleration of subunit dissociation. Double mutants combining these interface mutants with active site mutants of delta2 crystallin were able to dissociate and reassociate to form active tetramers in vitro within hours. These results suggest that exchange of subunits may occur without unfolding of the monomer. Intragenic complementation in these interface mutants occurs by reintroducing the native salt bridge interaction upon hetero-oligomerization. Our studies demonstrate the value of intragenic complementation as a tool for investigating subunit-subunit interactions in oligomeric proteins.  相似文献   

8.
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.  相似文献   

9.
Homology of delta crystallin and argininosuccinate lyase   总被引:1,自引:0,他引:1  
1. Delta crystallin, a major lens protein characteristic of birds and reptiles, is homologous to argininosuccinate lyase; 57% of the residues in chicken delta crystallin and human lyase are identical. 2. Even more similar (62% identical residues) to the human lyase is the sequence translated from the presumably inactive delta-2 gene of the delta crystallin locus. 3. As both delta crystallin and lyase are synthesized in birds only during the embryonic and juvenile stages, the persistence of delta crystallin in the adult lens appears to be paedomorphic. 4. Possible correlations of the origins of delta crystallin with other events in sauropsid evolution are proposed.  相似文献   

10.
Argininosuccinate lyase (ASL) catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate, a reaction involved in the biosynthesis of arginine in all species and in the production of urea in ureotelic species. In humans, mutations in the enzyme result in the autosomal recessive disorder argininosuccinic aciduria. Intragenic complementation has been demonstrated to occur at the ASL locus, with two distinct classes of ASL-deficient strains having been identified, the frequent and high-activity complementers. The frequent complementers participate in the majority of the complementation events observed and were found to be either homozygous or heterozygous for a glutamine to arginine mutation at residue 286. The three-dimensional structure of the frequently complementing allele Q286R has been determined at 2.65 A resolution. This is the first high-resolution structure of human ASL. Comparison of this structure with the structures of wild-type and mutant duck delta1 and delta2 crystallins suggests that the Q286R mutation may sterically and/or electrostatically hinder a conformational change in the 280's loop (residues 270-290) and domain 3 that is thought to be necessary for catalysis to occur. The comparison also suggests that residues other than R33, F333, and D337 play a role in maintaining the structural integrity of domain 1 and reinforces the suggestion that residues 74-89 require a particular conformation for catalysis. The electron density has enabled the structure of residues 6-18 to be modeled for the first time. Residues 7-9 and 15-18 are in type IV beta-turns and are connected by a loop. The conformation observed is stabilized, in part, by a salt bridge between the side chains of R12 and D18. Although the disease causing mutation R12Q would disrupt this salt bridge, it is unclear why this mutation has such a significant effect on the catalytic activity as residues 1-18 are disordered in all other delta-crystallin structures determined to date.  相似文献   

11.
12.
The major soluble protein in the lenses of most birds and reptiles is delta-crystallin. In chickens and ducks the delta-crystallin gene has duplicated, and in the duck both genes contribute to the protein in the lens, while in the chicken lens there is a great preponderance of the delta 1 gene product. Purified delta-crystallin has previously been shown to possess the enzymatic activity of argininosuccinate lyase. In order to determine the enzymatic properties of the two duck delta-crystallins their corresponding cDNA molecules were placed in yeast and bacterial expression plasmids. In Saccharomyces cerevisiae, the activity of each crystallin was assessed by transformation of the expression plasmids into a strain deficient for argininosuccinate lyase activity. The ability of the resulting yeast to grow on arginine deficient medium was used as a measure of enzymatic activity. Yeast expressing the duck delta 2-crystallin protein grew rapidly, while those expressing delta 1-crystallin failed to grow. Enzyme activity measurements confirmed the presence of activity in the delta 2-crystallin-expressing yeast, and no detectable activity could be demonstrated in the delta 1-crystallin-expressing yeast. Northern blotting of RNA from the transformed yeast revealed equal levels of mRNA species from the two constructs. For further analysis, the delta 2-crystallin cDNA was placed in the bacterial expression plasmid, pET-3d. The delta 2-crystallin protein produced in Escherichia coli was purified to homogeneity and analyzed to determine the kinetic properties. A Km of 0.35 mM was determined for argininosuccinate and a Vm of 3.5 mumols/min/mg was determined. These data demonstrate that, following duplication of the primordial argininosuccinate lyase gene, one of the genes maintained its role as an enzyme (delta 2-crystallin) while also serving as a crystallin and the other has evolved to specialize as a structural protein in the lens (delta 1-crystallin), presumably losing most or all of its catalytic capacity.  相似文献   

13.
C W Lin  S H Chiou 《FEBS letters》1992,311(3):276-280
delta-Crystallin is a major lens protein present in the avian and reptilian lenses. To facilitate the cloning of the delta-crystallin gene, cDNA was constructed from the poly(A)+ RNA of pigeon lenses, amplified by the polymerase chain reaction (PCR). The PCR product was then subcloned into pUC19 vector and transformed into E. coli strain JM109. Plasmids purified from the positive clones were prepared for nucleotide sequencing by the dideoxynucleotide chain-termination method. Sequencing two clones, containing 1.4 kb DNA inserts coding for delta-crystallin allowed the construction of a complete, full-length reading frame of 1,417 bp covering a deduced protein sequence of 466 amino acids, including the universal translation-initiating methionine. The pigeon delta-crystallin shows 88, 83 and 69% sequence identity to duck delta 2, chicken delta 1 crystallins and human argininosuccinate lyase respectively. It is also shown that, in contrast to duck delta 2 crystallin which has a high argininosuccinate lyase activity, pigeon delta-crystallin appears to contain very low activity of this enzyme, despite the fact that they share a highly homologous structure. A structural comparison of delta-crystallins with or without enzymatic activity suggested several amino acid replacements which may account for the loss of argininosuccinate lyase activity in the lenses of certain avian species.  相似文献   

14.
G J Wistow  J Piatigorsky 《Gene》1990,96(2):263-270
Argininosuccinate lyase(ASL)/delta-crystallin is a prominent example of an enzyme-crystallin with roles as both a catalyst and a major structural component of the eye lens in birds and reptiles. In chicken it appears that gene duplication and separation of function may have occurred with one gene product acting primarily as a crystallin and one primarily as an enzyme. However, two delta-crystallin-encoding genes are abundantly expressed in the lens of the embryonic duck (Anas platyrhynchos) which has extremely high ASL activity. Here the isolation and sequence analysis of full length cDNA clones for both duck delta-crystallins are described. The two delta-crystallins are highly similar (94% identical in predicted aa sequence), probably as a result of gene conversion. However, the cDNA for duck delta 2-crystallin contains an in-frame insertion of two codons, probably the result of a recent intron boundary slippage. ASL/delta-crystallin belongs to a superfamily of lyases, including fumarases, aspartases and adenylosuccinate lyase which possess some highly conserved blocks of aa sequence. There may be some clues to the tertiary structures of these conserved motifs in otherwise unrelated proteins for which three-dimensional structures are known.  相似文献   

15.
Aspartate ammonia lyases (or aspartases) catalyze the reversible deamination of L-aspartate into fumarate and ammonia. The lack of crystal structures of complexes with substrate, product, or substrate analogues so far precluded determination of their precise mechanism of catalysis. Here, we report crystal structures of AspB, the aspartase from Bacillus sp. YM55-1, in an unliganded state and in complex with L-aspartate at 2.4 and 2.6 ? resolution, respectively. AspB forces the bound substrate to adopt a high-energy, enediolate-like conformation that is stabilized, in part, by an extensive network of hydrogen bonds between residues Thr101, Ser140, Thr141, and Ser319 and the substrate's β-carboxylate group. Furthermore, substrate binding induces a large conformational change in the SS loop (residues G(317)SSIMPGKVN(326)) from an open conformation to one that closes over the active site. In the closed conformation, the strictly conserved SS loop residue Ser318 is at a suitable position to act as a catalytic base, abstracting the Cβ proton of the substrate in the first step of the reaction mechanism. The catalytic importance of Ser318 was confirmed by site-directed mutagenesis. Site-directed mutagenesis of SS loop residues, combined with structural and kinetic analysis of a stable proteolytic AspB fragment, further suggests an important role for the small C-terminal domain of AspB in controlling the conformation of the SS loop and, hence, in regulating catalytic activity. Our results provide evidence supporting the notion that members of the aspartase/fumarase superfamily use a common catalytic mechanism involving general base-catalyzed formation of a stabilized enediolate intermediate.  相似文献   

16.
Tyrosyl-tRNA synthetase (TyrRS) has been studied extensively by mutational and structural analyses to elucidate its catalytic mechanism. TyrRS has the HIGH and KMSKS motifs that catalyze the amino acid activation with ATP. In the present study, the crystal structures of the Escherichia coli TyrRS catalytic domain, in complexes with l-tyrosine and a l-tyrosyladenylate analogue, Tyr-AMS, were solved at 2.0A and 2.7A resolution, respectively. In the Tyr-AMS-bound structure, the 2'-OH group and adenine ring of the Tyr-AMS are strictly recognized by hydrogen bonds. This manner of hydrogen-bond recognition is conserved among the class I synthetases. Moreover, a comparison between the two structures revealed that the KMSKS loop is rearranged in response to adenine moiety binding and hydrogen-bond formation, and the KMSKS loop adopts the more compact ("semi-open") form, rather than the flexible, open form. The HIGH motif initially recognizes the gamma-phosphate, and then the alpha and gamma-phosphates of ATP, with a slight rearrangement of the residues. The other residues around the substrate also accommodate the Tyr-AMS. This induced-fit form presents a novel "snapshot" of the amino acid activation step in the aminoacylation reaction by TyrRS. The present structures and the T.thermophilus TyrRS ATP-free and bound structures revealed that the extensive induced-fit conformational changes of the KMSKS loop and the local conformational changes within the substrate binding site form the basis for driving the amino acid activation step: the KMSKS loop adopts the open form, transiently shifts to the semi-open conformation according to the adenosyl moiety binding, and finally assumes the rigid ATP-bound, closed form. After the amino acid activation, the KMSKS loop adopts the semi-open form again to accept the CCA end of tRNA for the aminoacyl transfer reaction.  相似文献   

17.
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.  相似文献   

18.
Wei YY  Huang CW  Chou WY  Lee HJ 《Biochimie》2012,94(2):566-573
Argininosuccinate lyase (ASL) catalyzes the conversion of argininosuccinate into arginine and fumarate, a key step in the biosynthesis of urea and arginine. ASL is a tetrameric enzyme but it dissociates into inactive dimers under low temperature conditions. This study investigates the inactivation process under low temperature conditions. Inactivation was caused by dissociation of tetrameric ASL into dimers, with increased exposure of hydrophobic areas without disturbance of the secondary structure or the microenvironment surrounding the key tryptophan residues. Most activity was retained when temperatures were changed at a rate of >1 °C/min, whilst freezing or thawing more slowly resulted in greater loss of activity. Inactivation was reduced by inclusion of α-crystallin, a structural protein found in ocular lenses and a member of the small heat-shock protein family, by stabilization of the ASL quaternary structure. In addition, α-crystallin was able to restore the function of ASL that had been inactivated by slow freezing and thawing. The effect of α-crystallin was similar to that of bovine serum albumin, suggesting that both proteins exerted their effects by hydrophobic interactions. α-Crystallin therefore acts as a cryo-preservative that protects ASL activity during freezing and thawing.  相似文献   

19.
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing "flaps," and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P,G106V, as well as the triple mutant, H65G,R105P,G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein.  相似文献   

20.
Alanine scanning mutagenesis and the introduction of deletions and insertions were used to address the role of the large cytoplasmic loop in 2-deoxy-D-glucose (2-DOG) uptake by GLUT1 expressed in Xenopus oocytes. Alanine scanning mutagenesis of 29 amino acid residues that are identical or homologous in GLUT1 to GLUT4 demonstrated that the transport activities of only a few variants were affected. Progressive truncation of the loop by six deletions leaving intact 59 (delta236-241), 49 (delta231-246), 39 (delta226-251), 28 (delta221-257), 18 (delta216-262), or 10 (delta213-267) amino acid residues resulted in a progressive decrease in 2-DOG uptake. Compared with wild-type GLUT1 the uptake rates varied between 33% for the delta236-241 mutant and 4% for the delta213-267 mutant. Insertional mutagenesis using hexaalanine or hexaglycine to fill in the deletion 236D-241L restored 2-DOG uptake to 73% of wild-type GLUT1 in the case of hexaalanine, whereas hexaglycine insertion was without effect. Confocal laser microscopy demonstrated that a deletion of six amino acid residues did not influence the expression level in the plasma membrane (delta236-241 mutant), whereas the plasma membrane fluorescence of the delta213-267 mutant was comparable with that of water-injected Xenopus oocytes. Computer-aided secondary structure prediction of the loop suggested that it consists of a long alpha-helix bundle interrupted or kinked by the highly conserved glycine-233.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号