首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Molecular dynamics (MD) simulations of a subtilisin-like serine protease VPR from the psychrophilic marine bacterium Vibrio sp. PA-44 and its mesophilic homologue, proteinase K (PRK), have been performed for 20 ns at four different temperatures (300, 373, 473, and 573 K). The comparative analyses of MD trajectories reveal that at almost all temperatures, VPR exhibits greater structural fluctuations/deviations, more unstable regular secondary structural elements, and higher global flexibility than PRK. Although these two proteases follow similar unfolding pathways at high temperatures, VPR initiates unfolding at a lower temperature and unfolds faster at the same high temperatures than PRK. These observations collectively indicate that VPR is less stable and more heat-labile than PRK. Analyses of the structural/geometrical properties reveal that, when compared to PRK, VPR has larger radius of gyration (Rg), less intramolecular contacts and hydrogen bonds (HBs), more protein-solvent HBs, and smaller burial of nonpolar area and larger exposure of polar area. These suggest that the increased flexibility of VPR would be most likely caused by its reduced intramolecular interactions and more favourable protein-solvent interactions arising from the larger exposure of the polar area, whereas the enhanced stability of PRK could be ascribed to its increased intramolecular interactions arising from the better optimized hydrophobicity. The factors responsible for the significant differences in local flexibility between these two proteases were also analyzed and ascertained. This study provides insights into molecular basis of thermostability of homologous serine proteases adapted to different temperatures.  相似文献   

3.
It is well established that the dynamic motion of proteins plays an important functional role, and that the adaptation of a protein molecule to its environment requires optimization of internal non-covalent interactions and protein-solvent interactions. Serine proteinases in general, and trypsin in particular has been used as a model system in exploring possible structural features for cold adaptation. In this study, a 500 p.s. and a 1200 p.s. molecular dynamics (MD) simulation at 300 K of both anionic salmon trypsin and cationic bovine trypsin are analyzed in terms of molecular flexibility, internal non-covalent interactions and protein-solvent interactions. The present MD simulations do not indicate any increased flexibility of the cold adapted enzyme on an overall basis. However, the apparent higher flexibility and deformability of the active site of anionic salmon trypsin may lower the activation energy for ligand binding and for catalysis, and might be a reason for the increased binding affinity and catalytic efficiency compared to cationic bovine trypsin.  相似文献   

4.
Molecular dynamics simulations have been carried out with four polypeptides, Ala13, Val(13), Ser13, and Ala4Gly5Ala4, in vacuo and with explicit hydration. The unfolding of the polypeptides, which are initially fully alpha-helix in conformation, has been monitored during trajectories of 0.3 ns at 350 K. A rank of Ala < Val < Ser < Gly is found in the order of increasing rate of unwinding. The unfolding of Ala13 and Val(13) is completed in hundreds of picoseconds, while that of Ser13 is about one order of magnitude faster. The helix content of the peptide containing glycine residues falls to zero within a few picoseconds. Ramachandran plots indicate quite distinct equilibrium distributions and time evolution of dihedral angles in water and in vacuum for each residue type. The unfolding of polyalanine and polyvaline helices is accelerated due to solvation. In contrast, polyserine is more stable in water compared to vacuum, because its side chains can form intramolecular hydrogen bonds with the backbone more readily in vacuum, which disrupts the helix. Distribution functions of the spatial and angular position of water molecules in the proximity of the polypeptide backbone polar groups reveal the stabilization of the coiled structures by hydration. The transition from helix to coil is characterized by the appearance of a new peak in the probability distribution at a specific location characteristic of hydrogen bond formation between water and backbone polar groups. No significant insertion of water molecules is observed at the precise onset of unwinding, while (i, i+3) hydrogen bond formation is frequently detected at the initiation of alpha-helix unwinding.  相似文献   

5.
Twenty pairs of thermophilic and mesophilic proteins were compared in terms of residue packing distribution to obtain structural features related to protein thermostability. Based on residue packing concept, structural features of residues such as residue packing distribution, inner/outer position, secondary structure and water solvation were investigated. The statistical tests revealed that higher frequency in well-packed state of residues, lower frequency in exposed state and higher frequency in well-packed state of inner positioned residues, and higher frequency in well-packed state of 3/10 helix residues could be general structural features thermophilic proteins have.  相似文献   

6.
Morra G  Hodoscek M  Knapp EW 《Proteins》2003,53(3):597-606
The cold shock protein from Bacillus caldolyticus is a small beta-barrel protein that folds in a two-state mechanism. For the native protein and for several mutants, a wealth of experimental data are available on stability and folding, so that it is an optimal system to study this process. We compare data from unfolding simulations (trajectories of 5 and up to 12 ns) obtained with a bias potential at room temperature and from unbiased thermal unfolding simulations with experimental data. The unfolding patterns derived from the trajectories starting from different native-like conformations and subject to different unfolding conditions agree. The transition state found in the simulations of unfolding is close to the native structure in agreement with experiment. Moreover, a lower value of the free energy barrier of unfolding was found for the mutant R3E than for the mutant E46A and the native protein, as indicated by experimental data. The first unfolding event involves the three-stranded beta-sheet whose decomposition corresponds to the transition state. In contrast to conclusions drawn from experiments, we found that the two-stranded beta-strand forms the most stable substructure, which decomposes very late in the unfolding process. However, assuming that this structure forms very early in the folding process, our findings would not contradict the experiments but require a different interpretation of them.  相似文献   

7.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

8.
In the attempt to clarify possible mechanisms underlying thermal stability of proteins, we study through molecular dynamics thermophile Bc-Csp, mesophile Bs-CspB, and selected mutants. These proteins have been extensively characterized experimentally; researchers showed that differential thermostability among the wild type proteins is fundamentally linked to one or two mutated amino acids, and that the nature of the effect is electrostatic. They also inferred an atomistic mechanism related to removal of unfavorable interactions, rather than to the formation of salt bridges. Molecular dynamics allows us to confirm and support both hypotheses. Several other collective parameters have also been monitored in relation to thermophilicity, such as global and local rigidity, permanence and number of hydrogen bonds, or of salt links. None of these clearly correlates with the thermal stability of the presently studied proteins.  相似文献   

9.
Molecular dynamics simulations were performed to study thermal stabilization of proteins via electrostatic interactions of ion pairs. Dynamic motions of four ion pairs previously proposed to be important in thermal stability of adenylate kinase from the thermophile Bacillus stearothermophilus were monitored during the simulation. One of the four ion pairs identified in the crystal structure, Lys180-Asp114, was not maintained in close contact suggesting that the ion pair does not contribute to thermal stability. Among the other three ion pairs, the ion pair Arg116-Glu198 was proposed to be the most important for stability. To predict behaviors of the ion pairs when engineered into a mesophilic homologue to increase stability, in silico mutants of adenylate kinase from the mesophile Bacillus subtilis were generated, and their molecular dynamics simulations were carried out. The ion pairs in the mutant simulations displayed similar behaviors to those in the simulation of the thermophilic protein. To validate the results of the simulations experimentally, the same mutants were produced in vitro and their thermal stabilities were measured using differential scanning calorimetry. In agreement with the simulations, the Lys180-Asp114 did not result in any increase in stability by itself or additive effect with other ion pairs, whereas a mutant with the Arg116-Glu198 exhibited the highest stability among the mutants having one of the four ion pairs. These results provide specific knowledge about stability in adenylate kinases and more generally suggest that molecular dynamics simulations can provide valuable information for identifying and engineering ion pairs.  相似文献   

10.

Background

There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts.

Results

We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures.

Conclusions

Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.
  相似文献   

11.
Peptides and proteins tend to aggregate under appropriate conditions. The amyloid fibrils that are ubiquitously found among these structures are associated with major human diseases like Alzheimer's disease, type II diabetes, and various prion diseases. Lately, it has been observed that even very short peptides like tetra and pentapeptides can form ordered amyloid structures. Here, we present aggregation studies of three such small polypeptide systems, namely, the two amyloidogenic peptides DFNKF and FF, and a control (nonamyloidogenic) one, the AGAIL. The respective aggregation process is studied by all-atom Molecular Dynamics simulations, which allow to shed light on the fine details of the association and aggregation process. Our analysis suggests that naturally aggregating systems exhibit significantly diverse overall cluster shape properties and specific intermolecular interactions. Additional analysis was also performed on the previously studied NFGAIL system.  相似文献   

12.
Structural distributions of each amino acid were compared between 20 pairs of thermophilic and mesophilic proteins to obtain thermostable factors. Five kinds of residual structure states such as fully-exposed, exposed, partially exposed (or partially buried), buried, well-buried states were considered for analyzing the structural patterns of amino acids. The statistical tests revealed that lower frequency in partially exposed state of SER, lower frequency in exposed state and higher frequency in well-buried state of ALA, higher frequency in buried state of GLU, higher frequency in exposed state of ARG, etc. could be critical factors related with protein thermostability.  相似文献   

13.
Structure-based differences of residual properties between 20 pairs of thermophilic and mesophilic proteins were statistically analyzed to elucidate the factors governing protein thermostability. This study analyzed the distributions of outer residues, inner residues, flexible residues, rigid residues, hydrogen bonds, salt bridges, cation–pi interactions, and disulfide bonds in each protein in terms of residual structural states, which were determined as five kinds of states under residual packing value. Their structural patterns found in thermophilic protein groups were compared with those of mesophilic protein groups for showing distinctive difference of residual properties. The results of statistical tests (t-test) revealed that flexible residues in fully-exposed state and boundary state, salt bridges in exposed state, and hydrogen bonds in well-buried state could be critical factors related with protein thermostability. Such structure-based differences of residual properties would help to develop a strategy for enhancing protein thermostability.  相似文献   

14.
Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis.  相似文献   

15.
We studied a pair of homologous thermophilic and mesophilic ribonuclease HI enzymes by molecular dynamics simulations. Each protein was subjected to three 5 ns simulations in explicit water at both 310 K and 340 K. The thermophilic enzyme showed larger overall positional fluctuations at both temperatures, while only the mesophilic enzyme at the higher temperature showed significant instability. When the temperature is changed, the relative flexibility of different local segments on the two proteins changed differently. Principal component analysis showed that the simulations of the two proteins explored largely overlapping regions in the conformational space. However, at 340 K, the collective structure variations of the thermophilic protein are different from those of the mesophilic protein. Our results, although not in accordance with the view that hyperthermostability of proteins may originate from their conformational rigidity, are consistent with several recent experimental and simulation studies which showed that thermophilic proteins may be conformationally more flexible than their mesophilic counterparts. The decorrelation between conformational rigidity and hyperthermostability may be attributed to the temperature dependence and long range nature of electrostatic interactions that play more important roles in the structural stability of thermophilic proteins.  相似文献   

16.
Esposito L  Daggett V 《Biochemistry》2005,44(9):3358-3368
Bovine pancreatic ribonuclease (RNase A) deserves a special place among the numerous proteins that form oligomers by three-dimensional domain swapping. In fact, under destabilizing conditions and at high protein concentrations, it can swap two different domains, the N-terminal alpha-helix or the C-terminal beta-strand, leading to dimers with different quaternary structures. With the change in the unfolding conditions, the relative abundance of the two dimers varies, and the prevalence of one dimer over the other is inverted. To investigate the dynamic behavior of the termini, four independent 10 ns high-temperature molecular dynamics simulations of RNase A were carried out at two different pH values in an attempt to reproduce the experimental conditions of neutral and very low pH that favor the formation of the N- and C-terminal domain-swapped dimers, respectively. In agreement with experimental data, under mild unfolding conditions, a partial or complete opening of the N-terminal arm is observed, whereas the dislocation of the C-terminus away from the core of the structure occurs only during the low-pH simulations. Furthermore, the picture emerging from this study indicates that the same protein can have different pathways for domain swapping. Indeed, in RNase A the C-terminal swapping requires a substantial unfolding of the monomers, whereas the N-terminal swapping can occur through only partial unfolding.  相似文献   

17.
Ribonucleotide reductase (RNR) is necessary for production of the precursor deoxyribonucleotides for DNA synthesis. Class Ia RNR functions via a stable free radical in one of the two components protein R2. The enzyme mechanism involves long range (proton coupled) electron transfer between protein R1 and the tyrosyl radical in protein R2. Earlier experimental studies showed that p-alkoxyphenols inhibit RNR. Here, molecular docking and molecular dynamics simulations involving protein R2 suggest an inhibition mechanism for p-alkoxyphenols . A low energy binding pocket is identified in protein R2. The preferred configuration provides a structural basis explaining their specific binding to the Escherichia coli and mouse R2 proteins. Trp48 (E. coli numbering), on the electron transfer pathway, is involved in the interactions with the inhibitors. The relative order of the binding energies calculated for the phenol derivatives to protein R2 is correlated with earlier experimental data on inhibition efficiency, in turn related to increasing size of the hydrophobic alkyl substituents. Using the configuration identified by molecular docking as a starting point for molecular dynamics simulations, we find that the p-allyloxyphenol interrupts the catalytic electron transfer pathway of the R2 protein by forming hydrogen bonds with Trp48 and Asp237, thus explaining the inhibitory activity of p-alkoxyphenols.  相似文献   

18.
The mechanosensitive channel of large conductance (MscL) in prokaryotes plays a crucial role in exocytosis as well as in the response to osmotic downshock. The channel can be gated by tension in the membrane bilayer. The determination of functionally important residues in MscL, patch-clamp studies of pressure-conductance relationships, and the recently elucidated crystal structure of MscL from Mycobacterium tuberculosis have guided the search for the mechanism of MscL gating. Here, we present a molecular dynamics study of the MscL protein embedded in a fully hydrated POPC bilayer. Simulations totaling 3 ns in length were carried out under conditions of constant temperature and pressure using periodic boundary conditions and full electrostatics. The protein remained in the closed state corresponding to the crystal structure, as evidenced by its impermeability to water. Analysis of equilibrium fluctuations showed that the protein was least mobile in the narrowest part of the channel. The gating process was investigated through simulations of the bare protein under conditions of constant surface tension. Under a range of conditions, the transmembrane helices flattened as the pore widened. Implications for the gating mechanism in light of these and experimental results are discussed.  相似文献   

19.
The stability of amidase-03 structure (a cell wall hydrolase protein) from Bacillus anthracis was studied using classical molecular dynamics (MD) simulation. This protein (GenBank accession number: NP_844822) contains an amidase-03 domain which is known to exhibit the catalytic activity of N-acetylmuramoyl-L-alanine amidase (digesting MurNAc-Lalanine linkage of bacterial cell wall). The amidase-03 enzyme has stability at high temperature due to the core formed by the combination of several secondary structure elements made of β-sheets. We used root-mean-square-displacement (RMSD) of the simulated structure from its initial state to demonstrate the unfolding of the enzyme using its secondary structural elements. Results show that amidase-03 unfolds in transition state ensemble (TSE). The data suggests that α-helices unfold before β-sheets from the core during simulation.  相似文献   

20.
Bhatt AN  Prakash K  Subramanya HS  Bhakuni V 《Biochemistry》2002,41(40):12115-12123
To determine how much information can be transferred from folding and unfolding studies of one protein to another member of the same family or between the mesophilic and thermophilic homologues of a protein, we have characterized the equilibrium unfolding process of the dimeric enzyme serine hydroxymethyltransferase (SHMT) from two sources, Bacillus subtilis (bsSHMT) and Bacillus stearothermophilus (bstSHMT). Although the sequences of the two enzymes are highly identical ( approximately 77%) and homologous (89%), bstSHMT shows a significantly higher stability against both thermal and urea denaturation than bsSHMT. The GdmCl-induced unfolding of bsSHMT was found to be a two-step process with dissociation of the native dimer, resulting in stabilization of a monomeric species, followed by the unfolding of the monomeric species. A similar unfolding pathway has been reported for Escherichia coli aspartate aminotransferase, a member of the type I fold family of PLP binding enzymes such as SHMT, the sequence of which is only slightly identical ( approximately 14%) with that of SHMT. In contrast, for bstSHMT, a highly cooperative unfolding without stabilization of any monomeric intermediate was observed. These studies suggest that mesophilic proteins of the same structural family even sharing a low level of sequence identity may follow a common unfolding mechanism, whereas the mesophilic and thermophilic homologues of the same protein despite having a high degree of sequence identity may follow significantly different unfolding mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号