首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A novel protein family (p14.5, or YERO57c/YJGFc) highly conserved throughout evolution has recently been identified. The biological role of these proteins is not yet well characterized. Two members of the p14.5 family are present in the yeast Saccharomyces cerevisiae. In this study, we have characterized some of the biological functions of the two yeast proteins. Mmf1p is a mitochondrial matrix factor, and homologous Mmf1p factor (Hmf1p) copurifies with the soluble cytoplasmic fraction. Deltammf1 cells lose mitochondrial DNA (mtDNA) and have a decreased growth rate, while Deltahmf1 cells do not display any visible phenotype. Furthermore, we demonstrate by genetic analysis that Mmf1p does not play a direct role in replication and segregation of the mtDNA. rho(+) Deltammf1 haploid cells can be obtained when tetrads are directly dissected on medium containing a nonfermentable carbon source. Our data also indicate that Mmf1p and Hmf1p have similar biological functions in different subcellular compartments. Hmf1p, when fused with the Mmf1p leader peptide, is transported into mitochondria and is able to functionally replace Mmf1p. Moreover, we show that homologous mammalian proteins are functionally related to Mmf1p. Human p14.5 localizes in yeast mitochondria and rescues the Deltammf1-associated phenotypes. In addition, fractionation of rat liver mitochondria showed that rat p14.5, like Mmf1p, is a soluble protein of the matrix. Our study identifies a biological function for Mmf1p and furthermore indicates that this function is conserved between members of the p14.5 family.  相似文献   

2.
The mouse polyomavirus gene for the major structural protein, VP1, with point mutation in the calcium-binding pocket (VP1(Ala)), was expressed in Saccharomyces cerevisiae and in a baculovirus expression system. Surprisingly, VP1(Ala) forms virus-like particles (VLPs) in nuclei of both yeast and insect cells. VP1(Ala)-VLPs produced in S. cerevisiae are unstable and, unlike wild-type VP1 (VP1(wt))-VLPs, they disassemble during the purification procedure and storage. In contrast to VP1(wt), VP1(Ala) does not interact with the yeast mitotic spindle. Nevertheless, both wild-type and mutated VP1 inhibit yeast cell growth. The inhibition is cAMP-dependent. The production of VP1(Ala) and VP1(wt)-VLPs in insect cells also revealed differences in their interactions with cellular protein(s). Thus, the mutation in the VP1 calcium pocket alters the stability and surface conformation of VLPs rather than the ability of VP1 to self-assemble.  相似文献   

3.
The Saccharomyces cerevisiae YDJ1 protein (YDJ1p) contains a C-terminal "CaaX box" motif common to proteins that are modified by prenylation. In the present study we show that YDJ1p is a specific substrate for both yeast and mammalian protein farnesyltransferase enzymes in vitro. A mutant form of YDJ1p, in which the conserved cysteine of the CaaX box is mutated to a serine (ydj1-S406p), cannot be farnesylated in vitro. After expression in S. cerevisiae, ydj1-S406p displays a reduced electrophoretic mobility and an increased cytosolic localization in subcellular fractionation experiments when compared to wild type YDJ1p. Expression of ydj1-S406 in cells lacking YDJ1 results in a temperature-sensitive growth phenotype in S. cerevisiae. These data indicate that farnesylation of YDJ1p is required for its function at elevated temperatures.  相似文献   

4.
5.
6.
7.
8.
The yeast Saccharomyces cerevisiae mitochondrial matrix factor Mmf1, a member in the YER057c/Yigf/Uk114 family, participates in isoleucine biosynthesis and mitochondria maintenance. Mmf1 physically interacts with another mitochondrial matrix protein Mam33, which is involved in the sorting of cytochrome b? to the intermembrane space as well as mitochondrial ribosomal protein synthesis. To elucidate the structural basis for their interaction, we determined the crystal structures of Mmf1 and Mam33 at 1.74 and 2.10 ?, respectively. Both Mmf1 and Mam33 adopt a trimeric structure: each subunit of Mmf1 displays a chorismate mutase fold with a six-stranded β-sheet flanked by two α-helices on one side, whereas a subunit of Mam33 consists of a twisted six-stranded β-sheet surrounded by five α-helices. Biochemical assays combined with structure-based computational simulation enable us to model a putative complex of Mmf1-Mam33, which consists of one Mam33 trimer and two tandem Mmf1 trimers in a head-to-tail manner. The two interfaces between the ring-like trimers are mainly composed of electrostatic interactions mediated by complementary negatively and positively charged patches. These results provided the structural insights into the putative function of Mmf1 during mitochondrial protein synthesis via Mam33, a protein binding to mitochondrial ribosomal proteins.  相似文献   

9.
hsHec1p, a Homo sapiens coiled-coil-enriched protein, plays an important role in M-phase progression in mammalian cells. A Saccharomyces cerevisiae protein, identical to Tid3p/Ndc80p and here designated scHec1p, has similarities in structure and biological function to hsHec1p. Budding yeast cells deleted in the scHEC1/NDC80 allele are not viable, but this lethal phenotype can be rescued by hsHEC1 under control of the endogenous scHEC1 promoter. At the nonpermissive temperature, significant mitotic delay, chromosomal missegregation, and decreased viability were observed in yeast cells with temperature-sensitive (ts) alleles of hsHEC1. In the hshec1-113 ts mutant, we found a single-point mutation changing Trp395 to a stop codon, which resulted in the expression of a C-terminally truncated 45-kDa protein. The binding of this mutated protein, hshec1-113p, to five identified hsHec1p-associated proteins was unchanged, while its binding to human SMC1 protein and yeast Smc1p was ts. Hec1p also interacts with Smc2p, and the binding of the mutated hshec1-113p to Smc2p was not ts. Overexpression of either hsHEC1 or scHEC1 suppressed the lethal phenotype of smc1-2 and smc2-6 at nonpermissive temperatures, suggesting that the interactions between Hec1p and Smc1p and -2p are biologically significant. These results suggest that Hec1 proteins play a critical role in modulating chromosomal segregation, in part, through their interactions with SMC proteins.  相似文献   

10.
纺锤体极体(spindle pole body,SPB)是酵母细胞的微管组织中心,它在细胞分裂及细胞遗传稳定性的维持过程中起着极其重要的作用,是细胞生物学领域热门的研究方向.Sfi1p是酿酒酵母SPB的必需蛋白并且横跨整个半桥,该蛋白与SPB的复制有关,它的缺失或突变会导致SPB复制失败,在哺乳动物的中心体也存在酵母Sfi1p的同源蛋白.本文系统的介绍了酵母Sfi1p及其在人类中心体中的同源蛋白hSfi1p的结构特征,并且阐明了Sfi1p在SPB复制与分离、核配及生孢等细胞周期过程中的作用.对Sfi1p的功能研究,将有助于解决SPB研究过程中重要的科学问题,同时为中心体中Sfi1p同源蛋白的功能研究提供良好的借鉴.  相似文献   

11.
Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.  相似文献   

12.
13.
14.
A great deal is now known about how cells regulate entry into mitosis, but only recently have the mechanisms controlling exit from mitosis and cytokinesis begun to be revealed. In the budding yeast Saccharomyces cerevisiae, Mob1p interacts with the Dbf2p kinase and cells containing mutations in these genes arrest in late anaphase [1] [2]. Proteins related to Mob1p are present in both plants and animals, but information about Mob1p function has been obtained only from budding yeast. Here, we describe the identification and characterization of Mob1p from Schizosaccharomyces pombe. Mob1p associates with the Sid2p kinase and like Sid2p, Mob1p is required for the initiation of cytokinesis, but not for mitotic exit. Mob1p localizes to the spindle pole body (SPB) and to the cell-division site during cell division, suggesting that it might be involved in transducing the signal to initiate cell division from the SPB to the division site. Mob1p is required for Sid2p localization, and Mob1p localization requires the function of the cdc7, cdc11, cdc14, spg1, sid1, sid2, and sid4 genes, suggesting that together with Sid2p, Mob1p functions at the end of the signaling cascade required to regulate the onset of cytokinesis at the end of mitosis.  相似文献   

15.
16.
The ability to switch between yeast and hyphal morphologies is an important virulence factor for the opportunistic pathogen Candida albicans. Although the kinetics of appearance of the filamentous ring that forms at the incipient septum differ in yeast and cells forming hyphae (germ tubes) (), the molecular mechanisms that regulate this difference are not known. Int1p, a C. albicans gene product with similarity in its C terminus to Saccharomyces cerevisiae Bud4p, has a role in hyphal morphogenesis. Here we report that in S. cerevisiae, Int1p expression results in the growth of highly polarized cells with delocalized chitin and defects in cytokinesis and bud-site selection patterns, phenotypes that are also seen in S. cerevisiae septin mutant strains. Expression of high levels of Int1p in S. cerevisiae generated elaborate spiral-like structures at the periphery of the polarized cells that contained septins and Int1p. In addition, Int1p coimmunoprecipitated with the Cdc11p and Cdc12p septins, and Cdc12p is required for the establishment and maintenance of these Int1p/septin spirals. Although Swe1p kinase contributes to INT1-induced filamentous growth in S. cerevisiae, it is not required for the formation of ectopic Int1p/septin structures. In C. albicans, Int1p was important for the axial budding pattern and colocalized with Cdc3p septin in a ring at the mother-bud neck of yeast and pseudohyphal cells. Under conditions that induce hyphae, both Cdc3p and Int1p localized to a ring distal to the junction of the mother cell and germ tube. Thus, placement of the Int1p/septin ring with respect to the mother-daughter cell junction distinguishes yeast/pseudohyphal growth from hyphal growth in C. albicans.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号