首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2' and 4'-doubly branched carbocyclic nucleosides 15, 16, 17 and 18 were synthesized starting from simple acyclic ketone derivatives. The required 4'-quatemary carbon was constructed using Claisen rearrangement. In addition, the installation of a methyl group in the 2'-position was accomplished using a Grignard carbonyl addition of isopropenylmagnesium bromide. Bis-vinyl was successfully cyclized using a Grubbs' catalyst II. Natural bases (adenine, cytosine) were efficiently coupled by using Pd(0) catalyst.  相似文献   

2.
A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3',4',5',5'-2H4 and -2',3',4',5',5'-2H5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-alpha,beta-D-allofuranose-3,4-d2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 16 (precursor of ribonucleosides-3',4',5',5'-2H4) or to 1-O-methyl-3,5-di-O-benzyl-alpha,beta-D-ribofuranose-3,4,5,5'-d4 18 (precursor of ribonucleosides-3',4',5',5'-2H4).  相似文献   

3.
An asymmetric synthesis route towards (3S,3'S)-(M,M)-(E)-(+)-1,1',2, 2',3,3',4,4'-octahydro-3,3',7,7'-tetramethyl-4,4'-biphenanthrylidene was developed using the Evans procedure as a key step. The absolute configurations of the title compound and of its parent ketone were determined by CD spectroscopy and could be correlated with the stereochemical results of the asymmetric alkylation. Furthermore, a comparison was made with the known (3R,3'R)-(P,P)-(E)-(-)-1,1',2,2', 3,3',4,4'-octahydro-3,3',7,7'-dimethyl-4,4'-biphenanthrylidene. Finally, the X-ray crystallographic analysis of (3S,3'S)-(M, M)-(E)-(+)-1,1',2,2',3,3',4,4'-octahydro-3,3',7,7'-tetramethyl-4, 4'-biphenanthrylidene is presented.  相似文献   

4.
The reactivity order of O-deisopropylidenation of the three isopropylidene protecting groups of 2',6'-di-O-benzyl-2,3:5,6:3',4'-tri-O-isopropylidenelactose dimethyl acetal (2) with various reagents was established. The 5,6-acetal group was, although to a limited extent, more reactive as compared with the 3',4' group, while the 2,3-O-isopropylidene group was definitely less reactive. Conditions were determined for the direct preparation of the 5,6,3',4'-tetraol 5 (60% aqueous acetic acid, room temperature, 48 h, 73% yield) and the 5,6-diol 4 (propylene glycol and p-toluenesulphonic acid in dichloromethane, 46% yield). The diacetonated derivative 3, formally arising from a selective 3',4'-O-deisopropylidenation, was obtained in high yield (90%) through a selective acetonation with 2-methoxypropene of the tetraol 5.  相似文献   

5.
Li YX  Wang SH  Li ZM  Su N  Zhao WG 《Carbohydrate research》2006,341(17):2867-2870
To develop novel biologically active organic compounds possessing a sugar moiety, a series of 2-phenylsulfonylhydrazono-3-(2',3',4',6'-tetra-O-acetyl-beta-d-glucopyranosyl)thiazolidine-4-one were synthesized via reaction of the thiosemicarbazide with ethyl bromoacetate. Their chemical structures were characterized by (1)H and (13)C NMR spectroscopy, elemental analysis and MS. The bioassay results indicated that some of these compound exhibit moderate fungicidal and herbicidal activities. Furthermore, the effect of various solvents at reflux temperature on the reactions of ethyl bromoacetate with the related thiosemicarbazides was investigated.  相似文献   

6.
Solution structure of anti-AIDS drug, 2',3'-dideoxyinosine (ddI) has been assessed by NMR spectroscopy and pseudorotational analysis in conjunction with its analogues: 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG) and 2',3'-dideoxycytidine (ddC). The absence of 3'-hydroxyl groups in these compounds has prompted us to establish the relationship between proton-proton and corresponding endocyclic torsion angles in the 2',3'-dideoxyribofuranose moiety on the basis of five available crystal structures of 2',3'-dideoxynucleosides. A subsequent pseudorotational analysis on ddI (1), ddA (2), ddG (3) and ddC (4) shows that the twist C2'exo-C3'-endo forms of sugar are overwhelmingly preferred (75-80%) over the C2'-endo envelope forms. The phase angles (P) for North and South conformers with the corresponding puckering amplitude (psi m) for ddI (1), ddA (2) and ddG (3) are as follows: PN = 0.1 degrees, PS = 161 degrees and psi m = 34.1 degrees for ddI (1); PN = 1.4 degrees, PS = 160 degrees and psi m = 34.2 degrees for ddA (2) and PN = 2.4 degrees, PS = 163 degrees and psi m = 33.6 degrees for ddG (3). The predominant North conformer of ddC (4) is intermediate between twist C2'-exo-C3'-endo and C3'-endo envelope (P = 10.9 degrees) with a psi m of 34.7 degrees. Note that these preponderant North-sugar structures (approx. 75-80%) found in the solution studies of ddI (1), ddA (2), dG (3) and ddC (4) are not reflected in the X-ray crystal structures of 2',3'-dideoxyadenosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures denosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures are found to be in the South-type geometry (ddA crystalizes in C3'-exo envelope form, while ddC adopts the form intermediate between the C3'-exo envelope and C3'-endo-C4'-exo twist form). This means that X-ray structures of ddA (2) and ddC (4) only represent the minor conformer of the overall pseudorotamer population in solution. An assumption that the structure of the pentofuranose sugar (i.e. P and psi m) participating in conformational equilibrium described by the two-state model remains unchanged at different temperatures has been experimentally validated by assessing five unknown pseudorotational parameters with eight unique observables (3J1'2', 3J1'2", 3J2'3', 3J2'3", 3J2"3', 3J2"3", 3J3'4' and 3J3"4') for 2',3'-dideoxynucleosides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
2',3'-Didehydro-2',3'-dideoxy-9-deazaguanosine (1), its monophosphate prodrug (2), and two analogues, 2',3'-dideoxy-9-deazaguanosine (3) and 2',3'-didehydro-2',3'-dideoxy-9-deazainosine (4), have been synthesized from benzoylated 9-deazaguanosine (5). Basic hydrolysis of 5, selective protection of the 2-amino and 5'-hydroxy functions with isobutyryl and silyl groups, respectively, followed by reaction with thiocarbonyldiimidazole gave the cyclic thiocarbonate, which, upon reaction with triethyl phosphite, followed by deprotection, afforded 1. Treatment of 1 with phenyl methoxyalaninylphosphochloridate and N-methylimidazole gave 2. Catalytic hydrogenation of 1 gave 3. Hydrodediazoniation of 1 with tert-butyl nitrite and tris(trimethylsilyl)silane gave 4. Compounds 1-4 were found to be inactive against the human immunodeficiency virus and exhibited minimal to no cytotoxic activity against the L1210 leukemia, CCRF-CEM lymphoblastic leukemia, and B16F10 melanoma in vitro.  相似文献   

8.
Kinetics of the hydrolysis of a P(1)-(7-methylguanosinyl-5') P(3)-(guanosinyl-5') triphosphate (m(7)GpppG), P(1)-(7-methylguanosinyl-5') P(4)- (guanosinyl-5') tetraphosphate (m(7)GppppG), diadenosine-5',5'-P(1),P(3)-triphosphate (ApppA), and diadenosine-5',5'-P(1),P(4)-tetraphosphate (AppppA) promoted by Cu(2+) or Zn(2+) has been investigated. Time-dependent products distributions at various metal ion concentrations have been determined by CZE and HPLC-RP. The results show that in acidic conditions, in the presence of metal ion, the predominant hydrolytic reaction is the cleavage of 5',5'-oligophosphate bridge. The 5',5'-oligophosphate bridge of the dinucleotides studied is hydrolyzed by Cu(2+) more efficiently than by Zn(2+). At the catalyst concentration of 2 mM the cleavage of the 5',5'-triphosphate bridge of m(7)GpppG was ~3.6 times faster, and that of the tetraphosphate bridge of m(7)GppppG ~2.3-fold faster in the presence of Cu(2+) compared to the Zn(2+) ion, applied as catalysts. Dependence of the rates of hydrolysis on the catalyst concentration was in some instances not linear, interpreted as evidence for participation of more than one metal ion in the transition complex.  相似文献   

9.
The acid-catalysed reaction of 4,1',6'-trichloro-4,1',6'-trideoxy-galacto- sucrose (1) with 5.5 equiv. of 2-methoxypropene in N,N-dimethylformamide followed by acetylation gave 3',4'-di-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene-6-O-(1-methoxy-1-methylethyl)-galacto-sucrose (2, 2%), 6,3',4'- tri- O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O-isopropylidene-galacto -sucrose (3, 31%), 3',4'-di-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene- galacto-sucrose (4, 38%), 3'-O-acetyl-4,1',6'-trichloro-4,1',6'-trideoxy-2,3-O- isopropylidene- galacto-sucrose (5, 13%), and 2,3',4'-tri-O-acetyl-4,1',6'-trichloro- 4,1',6'-trideoxy-galacto-sucrose (6, 13%). Methylation of 4 followed by removal of the protecting groups gave 4,1',6'-trichloro-4,1',6'-trideoxy-6-O-methyl- galacto- sucrose (8). 4,1',6'-Trichloro-4,1',6'-trideoxy-3-O-methyl-galacto-sucrose (11) was synthesised from 6 by preferential tert-butyldiphenylsilylation of HO-6 followed by methylation and removal of the protecting groups. Likewise, 4,1',6'-trichloro- 4,1',6'-trideoxy-4'-O-methyl-galacto-sucrose (14) was synthesised from 5. Treatment of 3 with aqueous acetic acid followed by methylation and removal of the protecting groups afforded 4,1',6'-trichloro-4,1'6'-trideoxy-2,3-di-O-methyl- galacto-sucrose (17).  相似文献   

10.
2',3'-Didehydro-2',3'-dideoxy-5-chlorocytidine (D4CC) is, in contrast with 2',3'-dideoxy-5-chlorocytidine (ddClCyd) and 2',3'-didehydro-2',3'-dideoxy-5-chlorouridine (D4CU), a potent and selective inhibitor of the replication of human immunodeficiency virus (HIV) types 1 and 2, simian immunodeficiency virus (SIV) and simian AIDS related virus (SRV). D4CC is a poor inhibitor of the phosphorylation of [5-3H]2'-deoxycytidine (dCyd) by partially purified MT-4 cell dCyd kinase (Ki: 612 microM). The findings that (i) D4CC has little, if any, affinity for MT-4 cell Cyd/dCyd deaminase, (ii) D4CU is not antivirally active and (iii) the antiretroviral action of D4CC can be reversed by dCyd, but not dThd, indicate that D4CC is antivirally active as its Cyd metabolite (D4CC 5'-triphosphate) and does not need to be deaminated (to the corresponding Urd metabolite) to exert its antiretroviral action.  相似文献   

11.
For the development of new anticancer agents, 2,2':6',2"-, 2,2':6',3"- and 2,2':6',4"-terpyridine derivatives were designed and evaluated for their topoisomerase I inhibitory activity and antitumor cytotoxicity. Structure-activity relationship studies indicated that 2,2':6',2"-terpyridine derivatives were highly cytotoxic toward several human tumor cell lines, whereas 2,2':6',3"- and 2,2':6',4"-terpyridine derivatives were potent topoisomerase I inhibitors.  相似文献   

12.
Rabbit antibodies to 2',5'-linked triadenylate were prepared by immunization with (2',5')A3 conjugated via the 2'3'-levulinic group, (2'5')A3-Lev, to BSA. New radioimmunoassay for (2',5')oligoadenylates was developed using 125I thyrosine labeled derivative of (2',5')A3-Lev. Reactivity of antibodies with phosphorothioate and seco analogs of oligoadenylates was studied. It was found that (i) stereospecific substitution of the diastereotopic oxygens with sulfur in the internucleotide phosphodiester linkages changes the immunoreactivity of such analogs; (ii) the seco analogs of oligoadenylates display in some cases a rather high reactivity.  相似文献   

13.
3',4',6,7-Tetrahydroxyaurone (1a), an aurone isolated from Bidens frondosa, and five analogues (1b-1f) were synthesized from pyrogallol in three steps. The antioxidative activity of 1a-1f was determined by the superoxide free radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging methods.  相似文献   

14.
Oligoribonucleotides containing 2',5'-phosphodiester linkages have been synthesized on a solid support by the 'silyl-phosphoramidite' method. The stability of complexes formed between these oligonucleotides and complementary 3',5'-RNA strands have been studied using oligoadenylates and a variety of oligonucleotides of mixed base sequences including phosphorothioate backbones. In many cases, particularly for 2',5'-linked adenylates, the UV melting profiles are quite sharp and exhibit large hyperchromic changes. Substituting a few 3',5'-linkages with the 2',5'-linkage within an oligomer lowers the Tm of the complex and the degree of destabilization depends on the neighboring residues and neighboring linkages. The 2',5'-linked oligoribonucleotides prepared in this study exhibited remarkable selectivity for complementary single stranded RNA over DNA. For example, in 0.01 M phosphate buffer--0.10 M NaCl (pH 7.0), no association was observed between 2',5'-r(CCC UCU CCC UUC U) and its Watson-Crick DNA complement 3',5'-d(AGAAGGGAGAGGG). However, 2',5'-r(CCC UCU CCC UUC U) with its RNA complement 3',5'-r(AGAAGGGAGAGGG) forms a duplex which melts at 40 degrees C. The decamer 2',5'-r(Ap)9A forms a complex with both poly dT and poly rU but the complex [2',5'-r(Ap)9A]:[poly dT] is unstable (Tm, -1 degree C) and is seen only at high salt concentrations. In view of their unnatural character and remarkable selectivity for single stranded RNA, 2',5'-oligo-RNAs and their derivatives may find use as selective inhibitors of viral mRNA translation, and as affinity ligands for the purification of cellular RNA.  相似文献   

15.
16.
In this study, we synthesized a series of hydroxychalcones and examined their tyrosinase inhibitory activity. The results showed that 2',4',6'-trihydroxychalcone (1), 2,2',3,4',6'-pentahydroxychalcone (4), 2',3,4,4',5,6'-hexahydroxychalcone (5), 2',4',6'-trihydroxy- 3,4-dimethoxychalcone (9) and 2,2',4,4',6'-pentahydroxychalcone (15) exhibited high inhibitory effects on tyrosinase with respect to l-tyrosine as a substrate. By the structure-activity relationship study, it was suggested that the 2',4',6'-trihydroxyl substructure in the chalcone skeleton were efficacious for the inhibition of tyrosinase activity. And also, the catechol structure on B-ring of chalcones was not advantageous for the inhibitory potency. Furthermore, 15 (IC(50)=1microM) was found to show the highest activity out of a set of 15 hydroxychalcones, even better than both 2,2',4,4'-tetrahydroxychalcone (13, IC(50)=5microM) and kojic acid (16, IC(50)=12microM), which were known as potent tyrosinase inhibitors. Kinetic study revealed that 15 acts as a competitive inhibitor of tyrosinase with K(i) value of 3.1microM.  相似文献   

17.
The metabolism by rat hepatic microsomal cytochrome P-450-dependent monooxygenases of several model substrates that are specific for individual isoforms of cytochrome P-450 and the metabolism by these monooxygenases of two structurally related isomers of hexachlorobiphenyl was studied. The most striking result was that 2,2',3,5,5',6-hexachlorobiphenyl was metabolised in vitro at the rate of 4.5 pmol/mg microsomal protein per min, whereas the other isomer 2,2',3,4,4',6-hexachlorobiphenyl was not metabolised at detectable rates. This finding provides strong evidence for a regioselective oxidative attack by cytochrome P-450-dependent monooxygenase with preferential insertion of oxygen at meta-para unsubstituted carbon atoms. Investigations into the mechanism of this oxidative attack suggest that the ortho hydrogen atom at carbon atom C-6' of 2,2',3,4,4',6-hexachlorobiphenyl was associated with a lower charge (0.075 e) compared with the meta or para hydrogen atoms at carbon atom C-3' and C-4' of 2,2',3,5,5',6-hexachlorobiphenyl (0.086 e). In addition, measurement of the main C-C bond length using MOPAC calculations and X-ray crystalographic data suggests significant differences in the bond-length distance, with the main bond lengths of 1.390, 1.385 and 1.374 A, respectively, for bridgehead to ortho (C1-C2), for ortho to meta (C2-C3), and for meta to para bonds. These results provide evidence that the preferential meta-para oxidative attack is linked to a shorter carbon-carbon bond length and a more positive charge distribution of the corresponding hydrogen atoms.  相似文献   

18.
19.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyaguanosine (d4G) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty d4G conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4G molecule is stabilized by nine types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3, C8H...H1C5', C8H...H2'C5' and N2H1...O5'. The obtained results of conformational analysis permit us to think that d4G may be a terminator of the DNA chain synthesis in the 5'-3' direction. Thus it can be inferred that d4G competes with canonical 2'-deoxyaguanosine in binding an active site of the corresponding enzyme.  相似文献   

20.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号