共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis related protein 3, an ATRA-upregulated membrane protein arrests the cell cycle at G1/S phase by decreasing the expression of cyclin D1 总被引:1,自引:0,他引:1
Yu F Yang G Zhao Z Ji L Cao Y Bai L Lu F Fu H Huang B Li H Zhang J Yao L Lu Z 《Biochemical and biophysical research communications》2007,358(4):1041-1046
Human Apr3 was first cloned from HL-60 cells treated by ATRA. In this study, we further demonstrated that Apr3 could be obviously upregulated by ATRA in many other ATRA sensitive cells, suggesting a common role of Apr3 in ATRA effects. Indirect immunofluorescence assay indicates that Apr3 is a membrane protein, while its truncated form without the predicted transmembrane and intracellular domain, was likely a secreted one. Furthermore, FACS analysis showed that Apr3 overexpression could cause an obvious G1/S phase arrest which might be induced by dramatic reduction of cyclin D1 expression. Strikingly, the truncated Apr3 antagonized the negative role of Apr3 on cell cycle and cyclin D1. Taken together, our data suggest that Apr3 should play an important role in ATRA signal pathway and the predicted transmembrane and/or the intracellular domain mediates Apr3 membrane localization and is vital for the negative regulation on cell cycle and cyclin D1. 相似文献
2.
We have previously shown that the mitogenic effect of endothelin-1 (ET-1) in primary astrocytes is dependent on activation of both extracellular signal-regulated kinase (ERK)- and cytoskeleton (CSK)-dependent pathways. In this study, we evaluated the contribution of each of these pathways to the expression and activation of proteins mediating cell cycle progression. Our results suggest that ET-1-induced expression of cyclins D1 and D3 is dependent on the ERK- and CSK-dependent pathways, respectively; moreover, a decrease in the levels of the cyclin-dependent kinase inhibitor (CKI) p27 was observed as a consequence of ERK activation. Expression of both cyclins D1 and D3 together with a decrease in the p27 levels are essential for retinoblastoma protein (pRB) phosphorylation and cyclin A expression. Furthermore, the molecular events responsible for cell-cell contact inhibition of astrocyte proliferation were found to be independent of the mitogenic pathways leading to D-type cyclin expression. Cell growth arrest in confluent astrocytes was found to be correlated with increased expression of CKI p21, resulting in inhibition of D-type cyclin-associated pRB phosphorylation and cyclin A expression. Taken together, these results indicate that cyclins D1 and D3, which constitute the key mediators of the proliferative response of primary astrocytes to ET-1, are regulated by distinct signaling pathways. 相似文献
3.
Higher levels of cell proliferation rate and cyclin CycD3 expression in the Arabidopsis amp1 mutant.
Cytokinins are involved in plant cell proliferation leading to plant growth and morphogenesis. The amp1 mutant of Arabidopsis has a five-fold higher level of cytokinin than the wild type plant. The mutant has a number of phenotypes with apparently increased cell proliferation rate similar to those seen in plants transformed with an ipt gene and having higher cytokinin levels. In order to identify molecular factors responsible for this cytokinin-induced higher cell division rate in the mutant we have examined cyclin genes expression levels. While expression of the CycD1 and cycC cyclins is not altered or is slightly decreased in the mutant, cyclin CycD3, is more highly expressed. The level of the CycD3 expression decreases in a revertant of amp1, meaning that the over-expression of this particular cyclin is linked to the phenotype of the amp1 mutant. Thus the expression of a specific G1 cyclin is upregulated in a mutant which has more cytokinin than the wild type. 相似文献
4.
5.
Mori J Takahashi-Yanaga F Miwa Y Watanabe Y Hirata M Morimoto S Shirasuna K Sasaguri T 《Experimental cell research》2005,310(2):426-433
Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G0/G1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3beta (GSK-3beta). Depletion of endogenous GSK-3beta by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3beta and found that DIF-1 dephosphorylated GSK-3beta on Ser9 and induced the nuclear translocation of GSK-3beta, suggesting that DIF-1 activated GSK-3beta. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3beta-mediated phosphorylation of Thr286. 相似文献
6.
Sumrejkanchanakij P Eto K Ikeda MA 《Biochemical and biophysical research communications》2006,340(1):302-308
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis. 相似文献
7.
Takahashi M Kojima M Nakajima K Suzuki-Migishima R Motegi Y Yokoyama M Takeuchi T 《Biochemical and biophysical research communications》2004,324(4):1319-1323
jumonji (jmj) mutant mice, obtained by a gene trap strategy, showed several morphological abnormalities including neural tube and cardiac defects, and died in utero around embryonic day 11.5 (E11.5). It is unknown what causes the embryonic lethality. Here, we demonstrate that exogenous expression of jmj gene in the heart of jmj mutant mice rescued the morphological phenotypes in the heart, and these embryos survived until E13.5. These results suggest that there are at least two lethal periods in jmj mutant mice, and that cardiac abnormalities may cause the earlier lethality. In addition, the rescue of the cardiac abnormalities by the jmj transgene provided solid evidence that the cardiac abnormalities resulted from mutation of the jmj gene. 相似文献
8.
9.
《DNA Repair》2016
Maintenance of DNA integrity is vital for all of the living organisms. Consequence of DNA damaging ranges from, introducing harmless synonymous mutations, to causing disease-associated mutations, genome instability, and cell death. A cell cycle protein cyclin D1 is an established cancer-driving protein. However, contribution of cyclin D1 to cancer formation and cancer survival is not entirely known. In cancer tissues, overexpression of cyclin D1 is associated with both cancer genome instability, and resistance to DNA-damaging cancer drugs. Emerging evidence indicated that cyclin D1 may play novel direct roles in regulating DNA repair. Here we provide an insight how cyclin D1 expression may contribute to DNA repair and chromosome instability, and how these functions may facilitate cancer formation, and drug resistance. 相似文献
10.
Kundumani-Sridharan V Van Quyen D Subramani J Singh NK Chin YE Rao GN 《The Journal of biological chemistry》2012,287(27):22463-22482
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3. 相似文献
11.
12.
Busk PK Hinrichsen R Bartkova J Hansen AH Christoffersen TE Bartek J Haunsø S 《Experimental cell research》2005,304(1):149-161
The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21Waf1/Cip1 and p27Kip1. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27Kip1. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2. 相似文献
13.
14.
15.
A. ParralesE. López A.M. López-Colomé 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(10):1758-1766
The retinal pigment epithelium (RPE) plays an essential role in the survival and function of the neural retina. RPE uncontrolled proliferation leads to the development of proliferative ocular pathologies, among which proliferative vitreoretinopathy (PVR) is the main cause of retinal surgery failure. Upon the breakdown of the BRB due to trauma or metabolic imbalance the contact of RPE with serum-contained thrombin has been shown to stimulate the proliferation of otherwise quiescent RPE cells. Although the molecular mechanisms involved in this effect are still undetermined, thrombin proteolytic activation of protease-activated G protein coupled receptor-1 (PAR-1) activates PI3K and Akt, known to play an essential role in proliferation. The present study demonstrates that: 1) thrombin stimulates Ser 473 Akt phosphorylation without affecting Thr 308 basal phosphorylation in RPE cells; 2) thrombin-induced Akt stimulation promotes cyclin D1 accumulation through the phosphorylation/ inhibition of GSK-3β, thus preventing Thr 286 cyclin D1 phosphorylation, nuclear export and degradation; 3) Akt signaling requires the upstream activation of PI3K and PLC. Since the pharmacological inhibition of these pathways or the silencing of cyclin expression prevent thrombin-induced RPE cell proliferation, these results contribute relevant evidence for establishing the mechanism involved in the development of proliferative eye diseases. 相似文献
16.
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence. 相似文献
17.
Tamamori-Adachi M Ito H Nobori K Hayashida K Kawauchi J Adachi S Ikeda MA Kitajima S 《Biochemical and biophysical research communications》2002,296(2):274-280
Differentiated cardiomyocytes have little capacity to proliferate and show the hypertrophic growth in response to alpha1-adrenergic stimuli via the Ras/MEK pathway. In this study, we investigated a role of cyclin D1 and CDK4, a positive regulator of cell cycle, in cultured neonatal rat cardiomyocyte hypertrophy. D-type cyclins including cyclin D1 were induced in cells stimulated by phenylephrine. This induction was inhibited by MEK inhibitor PD98059 and the dominant negative RasN17, but mimicked by expression of the constitutive active Ras61L. Over-expression of cyclin D1 and CDK4 using adenovirus gene transfer caused the hypertrophic growth of cardiomyocytes, as evidenced by an increase of the cell size as well as the amount of cellular protein and its rate of synthesis. However, the cyclin D1/CDK4 kinase activity was not up-regulated in cells treated by hypertrophic stimuli or in cells over-expressing the cyclin D1 and CDK4. Furthermore, a CDK inhibitor, p16, did not inhibit the hypertrophic growth of cardiomyocytes. These results clearly indicated that cyclin D1 and CDK4 have a role in hypertrophic growth of cardiomyocytes through a novel mechanism(s) which appears not to be related to its activity required for cell cycle progression. 相似文献
18.
19.
20.