首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to determine if the major acidic phospholipids of Escherichia coli are essential to the organism, we constructed a null allele (pgsA30) of the pgsA gene thus rendering the organism incapable of synthesizing phosphatidylglycerol or cardiolipin. In strains carrying the pgsA30 allele cell viability, synthesis of gene product and the ability to synthesize the two major acidic phospholipids were dependent on the presence of a functional copy of the pgsA gene carried on a plasmid which was temperature-sensitive for replication. Growth ceased at the temperature restrictive for plasmid replication when the acidic phospholipid content dropped to about 10% of wild type levels which is slightly higher than the level reported in cells carrying the pgsA3 allele in a genetic background derived from strain SD12; the latter cells, which are capable of synthesizing low levels of acidic phospholipids, were previously shown to have no abnormal growth phenotype (Miyazaki, C., Kuroda, M., Ohta, A., and Shibuya, I. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 7530-7534). The pgsA30 allele, unlike the pgsA3 allele, could not support growth in strain SD12. Neither allele could support growth in two other independently derived strains of E. coli. Therefore, there is a direct dependence of cell viability on a functional pgsA gene product. Strain SD12 appears to contain a suppressor which allows cells with a reduced capability to synthesize acidic phospholipid (pgsA3 allele) to grow, but cannot support growth in cells with a complete lack of synthetic capability (pgsA30 allele).  相似文献   

2.
Phosphatidylinositol (PI) and metabolically derived products such as the phosphatidylinositol mannosides and linear and mature branched lipomannan and lipoarabinomannan are prominent phospholipids/lipoglycans of Mycobacterium sp. believed to play important roles in the structure and physiology of the bacterium as well as during host infection. To determine if PI is an essential phospholipid of mycobacteria, we identified the pgsA gene of Mycobacterium tuberculosis encoding the phosphatidylinositol synthase enzyme and constructed a pgsA conditional mutant of Mycobacterium smegmatis. The ability of this mutant to synthesize phosphatidylinositol synthase and subsequently PI was dependent on the presence of a functional copy of the pgsA gene carried on a thermosensitive plasmid. The mutant grew like the control strain under permissive conditions (30 degrees C), but ceased growing when placed at 42 degrees C, a temperature at which the rescue plasmid is lost. Loss of cell viability at 42 degrees C was observed when PI and phosphatidylinositol dimannoside contents dropped to approximately 30 and 50% of the wild-type levels, respectively. This work provides the first evidence of the essentiality of PI to the survival of mycobacteria. PI synthase is thus an essential enzyme of Mycobacterium that shows promise as a drug target for anti-tuberculosis therapy.  相似文献   

3.
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.  相似文献   

4.
Both the secAcsR11 and DeltasecG::kan mutations cause cold-sensitive growth, although the growth defect due to the latter mutation occurs in a strain-specific manner. Overexpression of pgsA encoding phosphatidylglycerophosphate synthase suppresses the growth defects of the two mutants. We investigated the mechanism underlying the pgsA-dependent suppression of the two mutations using purified mutant SecA and inverted membrane vesicles (IMVs) prepared from pgsA-overexpressing cells. The acidic phospholipid content increased by about 10% upon pgsA overexpression. This increase resulted in the stimulation of proOmpA translocation only when mutant SecA or SecG-depleted IMVs were used. The translocation-coupled ATPase activity of SecA was significantly defective with the mutant SecA or SecG-depleted IMVs, but it recovered to a near normal level when the acidic phospholipid level was increased. The stimulation of ATPase activity was observed only at low temperature. The steady-state level of membrane-inserted SecA was low with the mutant SecA or SecG-depleted IMVs, and it decreased further upon the increase in the acidic phospholipid content. However, the level of SecA insertion markedly increased upon the inhibition of SecA deinsertion by the addition of beta,gamma-imido adenosine 5'-triphosphate (AMP-PNP), especially with IMVs containing increased levels of acidic phospholipids. These results indicate that the increase in the level of acidic phospholipids stimulates the SecA cycle in the two mutants by facilitating both the insertion and deinsertion of SecA.  相似文献   

5.
An Escherichia coli pgsA null mutant deficient in acidic phospholipids shows a thermosensitive cell lysis phenotype because of activation of the Rcs phosphorelay signal transduction system. We conducted a DNA microarray analysis with special attention to the genes affected by growth temperature in the mutant deficient in acidic phospholipids. Among the genes identified as highly expressed at high temperature in the pgsA null mutant, the osmB gene was shown to be dependent on the Rcs system for the high expression by dot blot hybridization. Induction of the cloned osmB in the pgsA null mutant caused the thermosensitive defect even in the absence of the Rcs system. Although the deletion of osmB did not suppress the thermosensitivity in the presence of the Rcs system, indicating a multifactorial nature of the deleterious effect of the Rcs activation, we suggest that the osmB hyperexpression is one of the causes of the Rcs-dependent lysis phenotype of the pgsA null mutant.  相似文献   

6.
In the Escherichia coli pgsA null mutant, which lacks the major acidic phospholipids, the Rcs phosphorelay signal transduction system is activated, causing thermosensitive growth. The mutant grows poorly at 37 degrees C and lyses at 42 degrees C. We showed that the poor growth at 37 degrees C was corrected by disruption of the rcsA gene, which codes for a coregulator protein that interacts with the RcsB response regulator of the phosphorelay system. However, mutant cells still lysed when incubated at 42 degrees C even in the absence of RcsA. We conclude that the activated Rcs phosphorelay in the pgsA null mutant has both RcsA-dependent and -independent growth inhibitory effects. Since the Rcs system has been shown to positively regulate the essential cell division genes ftsA and ftsZ independently of RcsA, we measured cellular levels of the FtsZ protein, but found that the growth defect of the mutant at 42 degrees C did not involve a change in the level of this protein.  相似文献   

7.
The structural gene (pgsA) for the CDP-diacylglycerol:sn-glycero-3-phosphate phosphatidyltransferase (EC 2.7.8.5, phosphatidylglycerophosphate synthase) from Escherichia coli has been cloned, using pSC101 as the vector. The resulting hybrid plasmids not only correct the lack of in vitro synthase activity in pgsA strains but also cause an amplification (6- to 40-fold over wild-type levels) in enzymatic activity in direct proportion to the copy number of the plasmids found in vivo. The cloned gene also corrects the abnormally low level of polyglycerophosphatides found in pgsA strains and actually increases the level of phosphatidylglycerol to above that normally found in E. coli. The degree of alteration in phospholipid composition brought about by these hybrid plasmids is not of the order expected if fluctuations in enzyme levels in vivo were an important regulatory mechanism in phospholipid metabolism. The isolated hybrid plasmids have been mapped by restriction endonuclease analysis. The presence and location of other genetic markers have also been established. The above data, along with analysis of deletion derivatives of these plasmids and subcloning of appropriate restriction fragments, have established the position of the pgsA locus on the hybrid plasmids. From this data, the position of the pgsA locus has been determined to le between flaI and uvrC on the E. coli genetic map.  相似文献   

8.
The Agrobacterium VirG protein is normally expressed from two promoters in response to multiple stimuli, including plant-released phenolics (at promoter P1) and acidic growth media (at promoter P2). To simplify the analysis of vir gene induction, we sought to create Agrobacterium strains in which virG could be expressed in a controllable fashion. To study the possibility of using the lac promoter and repressor, we constructed a plasmid containing the lac promoter fused to the lacZ structural gene. A derivative of this plasmid containing the lacIq gene was also constructed. The plasmid not containing lacIq expressed high levels of beta-galactosidase. The plasmid containing lacIq expressed beta-galactosidase at very low levels in the absence of o-nitrophenyl-beta-D-galactoside (IPTG) and at moderate levels in the presence of IPTG. We also fused the lac promoter to a virG::lacZ translational fusion and found that IPTG elevated expression of this translational fusion to moderate levels, though not to levels as high as from the stronger of the two native virG promoters. Finally, the lac promoter was used to express the native virG gene in strains containing a virB::lacZ translational fusion. virB expression in this strain depended on addition of IPTG as well as the vir gene inducer acetosyringone. In a similar strain lacking lacIq, virB expression was greater than in a strain in which virG was expressed from its native promoters. Expression of virG from the lac promoter did not alter the acidic pH optimum for vir gene induction, indicating that the previously observed requirement for acidic media was not due solely to the need to induce P2.  相似文献   

9.
10.
Merodiploid derivatives bearing an F-linked lac operon (i(+), o(+), z(+), y(+), a(+)) from Escherichia coli were prepared from a Proteus mirabilis strain unable to utilize lactose and from a lac deletion strain of E. coli. A suitable growth medium was found in which the episomal element in the P. mirabilis derivative was sufficiently stable to allow induction of the episome-borne lac operon and thus to permit a comparison of the activities and properties of E. coli lac products in the intracellular environments of P. mirabilis and E. coli. In both derivatives the episomal lac operon was shown to be repressed in the absence of inducer. Kinetics of induction with gratuitous inducer (isopropyl-1-thio-beta-d-galactoside) were similar for both beta-galactosidase activity (beta-d-galactoside galactohydrolase, EC 3.4.1.23) and beta-galactoside transport activity in both derivatives, although the ratio of galactoside transport to beta-galactosidase activity was approximately 1.6-fold higher in the E. coli derivative. Comparison of beta-galactosidase and M-protein (lac y gene product)-specific activities indicated coordinate expression of the induced lac operon in both derivatives. Quantitatively, the maximal beta-galactosidase specific activity was two or three times higher for the E. coli derivative. A significant sodium azide inhibition (65% inhibition by 10 mM sodium azide) of lactose permease-mediated transport of o-nitrophenyl-beta-galactoside from an outside region of high concentration to an inside region of very low concentration ("downhill transport") was observed for the P. mirabilis derivative. Identical conditions for the E. coli derivative yielded only about 15% inhibition. Active transport of thiomethyl-beta-galactoside was similar for both derivatives, the major difference being that active transport was more sensitive to azide poisoning in the P. mirabilis derivative. Preliminary examination of the thiomethyl-beta-galactoside derivatives following active transport did not demonstrate the accumulation of a phosphorylated product in either strain but did reveal an unidentified derivative present in the P. mirabilis merodiploid extract which was not detectable in the E. coli merodiploid.  相似文献   

11.
Expression of the Saccharomyces cerevisiae PIS gene encoding phosphatidylinositol synthase in Escherichia coli was achieved by inserting its coding sequence into lacZ on pUC8. The fused gene encoded a phosphatidylinositol synthase whose amino-terminal three amino acids had been replaced by the amino-terminal five amino acids of E. coli beta-galactosidase. E. coli cells bearing this recombinant plasmid produced a significant level of phosphatidylinositol synthase in the presence of a lacZ inducer, isopropylthio-beta-D-galactopyranoside. When the culture medium was supplemented with myo-inositol and isopropylthio-beta-D-galactopyranoside, the cells accumulated a substantial amount of phosphatidylinositol in their membranes. When a saturating level of myo-inositol was added, phosphatidylinositol constituted about 4% of the total phospholipids. Phosphatidylinositol accumulation occurred at the expense of phosphatidylglycerol. The ratio of phosphatidylethanolamine to total acidic phospholipids remained constant. The growth rate of phosphatidylinositol-containing E. coli cells did not differ significantly from that of cells with the normal phospholipid composition.  相似文献   

12.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

13.
RhodobactersphaeroideshemA编码5氨基乙酰丙酸合酶(ALAS),催化磷酸吡哆醛依赖性琥珀酰CoA和甘氨酸缩合成ALA.将R.spaeroideshemA导入E.coli进行表达,当hemA具有与lac启动子相同的转录方向时,ALAS有活性.lac启动子与hemA之间的距离会影响ALAS在不同培养基上的表达.E.coli宿主菌对ALAS表达、ALA产量有显著影响,在实验所用6种菌株中,E.coliDH1是最佳宿主菌(P<0.05).ALAS表达还与碳源有关,琥珀酸为碳源时,重组ALAS活性最高(P<0.05),以乳酸为碳源时,ALAS活性很低.重组ALAS活性也受培养基pH值影响,pH6.5时,活性最高(P<0.05).  相似文献   

14.
We localized the methionine aminopeptidase (map) gene on the Escherichia coli chromosome next to the rpsB gene at min 4. Genetically modified strains with the chromosomal map gene under lac promoter control grew only in the presence of the lac operon inducer isopropyl-beta-thiogalactoside. Thus, methionine aminopeptidase is essential for cell growth.  相似文献   

15.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, has been considered to play specific roles in various cellular processes and is believed to be essential for cell viability. It is functionally replaced in some cases by cardiolipin, another abundant acidic phospholipid derived from phosphatidylglycerol. However, we now show that a null pgsA mutant is viable, if the major outer membrane lipoprotein is deficient. The pgsA gene normally encodes phosphatidylglycerophosphate synthase that catalyzes the committed step in the biosynthesis of these acidic phospholipids. In the mutant, the activity of this enzyme and both phosphatidylglycerol and cardiolipin were not detected (less than 0.01% of total phospholipid, both below the detection limit), although phosphatidic acid, an acidic biosynthetic precursor, accumulated (4.0%). Nonetheless, the null mutant grew almost normally in rich media. In low-osmolarity media and minimal media, however, it could not grow. It did not grow at temperatures over 40 degrees C, explaining the previous inability to construct a null pgsA mutant (W. Xia and W. Dowhan, Proc. Natl. Acad. Sci. USA 92:783-787, 1995). Phosphatidylglycerol and cardiolipin are therefore nonessential for cell viability or basic life functions. This notion allows us to formulate a working model that defines the physiological functions of acidic phospholipids in E. coli and explains the suppressing effect of lipoprotein deficiency.  相似文献   

16.
17.
The 4.5 S RNA gene of Escherichia coli is essential for cell growth   总被引:22,自引:0,他引:22  
The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency in 4.5 S RNA, a dramatic loss in protein synthesis activity, and eventual cell death. Tagging of the chromosomal ffs region with a kanamycin-resistance gene allowed mapping of the 4.5 S RNA gene. Results from this analysis place ffs near lon at approximately ten minutes on the E. coli linkage map.  相似文献   

18.
Abstract Growth of wild-type Escherichia coli strain MRE600 was severely affected up to 9 h following treatment with the anthracycline doxorubicin (15 μM), however, after 9 h, the cells became resistant. The onset of resistance coincided with some changes in the relative proportions of total saturated, monounsaturated and cyclopropane fatty acids. The anionic lipid content in E. coli strain HDL11 is under lac control and synthesis can be induced by incubation with the lac inducer IPTG. HDL11, with low levels of anionic phospholipid, was unaffected by doxorubicin (100 μM) over 9 h, with only slight inhibition of growth seen over 24 h. When the anionic lipid content of HDL11 was increased, there was a slight increase in the efficacy of doxorubicin, providing evidence for a membrane-based step in doxorubicin action.  相似文献   

19.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号