首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

2.
Receptor tyrosine kinases have a single transmembrane (TM) segment that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, mutations within some of these receptors, and recent studies with the epidermal growth factor (EGF) and ErbB2 receptors have indicated that interactions between TM domains do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimerization and activation. One consequence of the importance of these interactions is that short hydrophobic peptides corresponding to these domains should act as specific inhibitors. To test this hypothesis, we constructed expression vectors encoding short fusion peptides encompassing native or mutated TM domains of the EGF, ErbB2, and insulin receptors. In human cell lines overexpressing the wild-type EGF receptor or ErbB2, we observed that the peptides are expressed at the cell surface and that they inhibit specifically the autophosphorylation and signaling pathway of their cognate receptor. Identical results were obtained with peptides chemically synthesized. Mechanism of action involves inhibition of dimerization of the receptors as shown by the lack of effects of mutant nondimerizing sequences, completed by density centrifugation and covalent cross-linking experiments. Our findings stress the role of TM domain interactions in ErbB receptor function, and possibly for other single-spanning membrane proteins.  相似文献   

3.
Receptor dimerization is generally considered to be the primary signaling event upon binding of a growth factor to its receptor at the cell surface. Little, however, is known about the precise molecular details of ligand-induced receptor dimerization, except for studies of the human growth hormone (hGH) receptor. We have analyzed the binding of epidermal growth factor (EGF) to the extracellular domain of its receptor (sEGFR) using titration calorimetry, and the resulting dimerization of sEGFR using small-angle X-ray scattering. EGF induces the quantitative formation of sEGFR dimers that contain two EGF molecules. The data obtained from the two approaches suggest a model in which one EGF monomer binds to one sEGFR monomer, and that receptor dimerization involves subsequent association of two monomeric (1:1) EGF-sEGFR complexes. Dimerization may result from bivalent binding of both EGF molecules in the dimer and/or receptor-receptor interactions. The requirement for two (possibly bivalent) EGF monomers distinguishes EGF-induced sEGFR dimerization from the hGH and interferon-gamma receptors, where multivalent binding of a single ligand species (either monomeric or dimeric) drives receptor oligomerization. The proposed model of EGF-induced sEGFR dimerization suggests possible mechanisms for both ligand-induced homo- and heterodimerization of the EGFR (or erbB) family of receptors.  相似文献   

4.
Integrins and growth factor receptors are important participants in cellular adhesion and migration. The EGF receptor (EGFR) family of tyrosine kinases and the β1-integrin adhesion receptors are of particular interest, given the implication for their involvement in the initiation and progression of tumorigenesis. We used adhesion and chemotaxis assays to further elucidate the relationship between these two families of transmembrane signaling molecules. Specifically, we examined integrin-mediated adhesive and migratory characteristics of the metastatic breast carcinoma cell line MDA-MB-435 in response to stimulation with growth factors that bind to and activate the EGFR or erbB3 in these cells. Although ligand engagement of the EGFR stimulated modest β1-dependent increases in cell adhesion and motility, heregulin-β (HRGβ) binding to the erbB3 receptor initiated rapid and potent induction of breast carcinoma cell adhesion and migration and required dimerization of erbB3 with erbB2. Pharmacologic inhibitors of phosphoinositide 3-OH kinase (PI 3-K) or transient expression of dominant negative forms of PI 3-K inhibited both EGF- and HRGβ-mediated adhesion and potently blocked HRGβ- and EGF-induced cell motility. Our results illustrate the critical role of PI 3-K activity in signaling pathways initiated by the EGFR or erbB3 to up-regulate β1-integrin function.  相似文献   

5.
《Journal of molecular biology》2014,426(24):4099-4111
Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix–helix association in cell membrane should have important practical implications related to our understanding of the structure–function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction.  相似文献   

6.
Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.  相似文献   

7.
Recent molecular genetics studies implicate neuregulin 1 (NRG1) and its receptor erbB in the pathophysiology of schizophrenia. Among NRG1 receptors, erbB4 is of particular interest because of its crucial roles in neurodevelopment and in the modulation of N-methyl-D-aspartate (NMDA) receptor signaling. Here, using a new postmortem tissue-stimulation approach, we show a marked increase in NRG1-induced activation of erbB4 in the prefrontal cortex in schizophrenia. Levels of NRG1 and erbB4, however, did not differ between schizophrenia and control groups. To evaluate possible causes for this hyperactivation of erbB4 signaling, we examined the association of erbB4 with PSD-95 (postsynaptic density protein of 95 kDa), as this association has been shown to facilitate activation of erbB4. Schizophrenia subjects showed substantial increases in erbB4-PSD-95 interactions. We found that NRG1 stimulation suppresses NMDA receptor activation in the human prefrontal cortex, as previously reported in the rodent cortex. NRG1-induced suppression of NMDA receptor activation was more pronounced in schizophrenia subjects than in controls, consistent with enhanced NRG1-erbB4 signaling seen in this illness. Therefore, these findings suggest that enhanced NRG1 signaling may contribute to NMDA hypofunction in schizophrenia.  相似文献   

8.
This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction.  相似文献   

9.
Deregulated signaling by the four members of the epidermal growth factor receptor tyrosine kinase family (erbB family) is implicated in the genesis or progression of human cancers. However, efforts to analyze signaling by these receptors have been hampered by the diversity of ligands and extensive interreceptor cross talk. We have expressed the four human erbB family receptors, singly and in pairwise combinations, in a pro-B-lymphocyte cell line (Ba/F3) and investigated the range of interactions activated by the epidermal growth factor homology domain of the agonist neuregulin beta. The results provide the first comprehensive analysis of the response of this receptor family to a single peptide agonist. This peptide induced complex patterns of receptor tyrosine phosphorylation and regulation of Ba/F3 cell survival and proliferation. These data demonstrate the existence of several previously undocumented receptor interactions driven by neuregulin.  相似文献   

10.
ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape.  相似文献   

11.
We describe the screening of lacZ deletions in mammalian cells and the discovery of a novel pair of lacZ deletions that can undergo alpha-complementation only when they are fused to peptides that interact with each other. The two lacZ deletions, delta N 11-75 and delta C 82-1023, were first characterized by fusing to two small interacting peptides and were then further analyzed by fusing to three membrane receptors (G protein-coupled receptors alpha 2cAR and D2DRL and receptor tyrosine kinase insulin receptor) that were known to form homodimers in the membrane. Histochemical and quantitative FACS assays demonstrated that the novel deletions have much lower level of association with each other, thus offering a much lower background in monitoring membrane protein interactions compared to previously published lacZ deletions. Furthermore, our method has the exciting potential to monitor simultaneously membrane receptor dimerization and localization to the cell surface of living cells.  相似文献   

12.
Non-proteolytic activities of matrix metalloproteinases (MMPs) have recently been shown to impact cell migration, but the precise mechanism remains to be understood. We previously demonstrated that the hemopexin (PEX) domain of MMP-9 is a prerequisite for enhanced cell migration. Using a biochemical approach, we now report that dimerization of MMP-9 through the PEX domain appears necessary for MMP-9-enhanced cell migration. Following a series of substitution mutations within the MMP-9 PEX domain, blade IV was shown to be critical for homodimerization, whereas blade I was required for heterodimerization with CD44. Blade I and IV mutants showed diminished enhancement of cell migration compared with wild type MMP-9-transfected cells. Peptides mimicking motifs in the outermost strands of the first and fourth blades of the MMP-9 PEX domain were designed. These peptides efficiently blocked MMP-9 dimer formation and inhibited motility of COS-1 cells overexpressing MMP-9, HT-1080, and MDA-MB-435 cells. Using a shRNA approach, CD44 was found to be a critical molecule in MMP-9-mediated cell migration. Furthermore, an axis involving a MMP-9-CD44-EGFR signaling pathway in cell migration was identified using antibody array and specific receptor tyrosine kinase inhibitors. In conclusion, we dissected the mechanism of pro-MMP-9-enhanced cell migration and developed structure-based inhibitory peptides targeting MMP-9-mediated cell migration.  相似文献   

13.
Many different growth factor ligands, including epidermal growth factor (EGF) and the neuregulins (NRGs), regulate members of the erbB/HER family of receptor tyrosine kinases. These growth factors induce erbB receptor oligomerization, and their biological specificity is thought to be defined by the combination of homo- and hetero-oligomers that they stabilize upon binding. One model proposed for ligand-induced erbB receptor hetero-oligomerization involves simple heterodimerization; another suggests that higher order hetero-oligomers are 'nucleated' by ligand-induced homodimers. To distinguish between these possibilities, we compared the abilities of EGF and NRG1-beta1 to induce homo- and hetero-oligomerization of purified erbB receptor extracellular domains. EGF and NRG1-beta1 induced efficient homo-oligomerization of the erbB1 and erbB4 extracellular domains, respectively. In contrast, ligand-induced erbB receptor extracellular domain hetero-oligomers did not form (except for s-erbB2-s-erbB4 hetero-oligomers). Our findings argue that erbB receptor extracellular domains do not recapitulate most heteromeric interactions of the erbB receptors, yet reproduce their ligand-induced homo-oligomerization properties very well. This suggests that mechanisms for homo- and hetero-oligomerization of erbB receptors are different, and contradicts the simple heterodimerization hypothesis prevailing in the literature.  相似文献   

14.
The epidermal growth factor receptors (erbB) constitute an important class of single pass transmembrane receptors involved in the transduction of signals important for cell proliferation and differentiation. Receptor association is a key event in the signal transduction process, but the molecular basis of this interaction is not fully understood. Previous biochemical and genetic studies have suggested that the single transmembrane helices of these receptor proteins might play a role in stabilizing the receptor complexes. To determine if the erbB transmembrane domains could provide a driving force to stabilize the receptor dimers, we carried out a thermodynamic study of these domains expressed as C-terminal fusion proteins with staphylococcal nuclease. Similar fusion constructs have been used successfully to investigate the oligomerization and association thermodynamics of a number of transmembrane sequences, including that of glycophorin A. Using SDS-PAGE analysis and sedimentation equilibrium analytical ultracentrifugation, we do not find strong, specific homo or hetero-interactions between the transmembrane domains of the erbB receptors in micellar solutions. Our results indicate that any preferential interactions between these domains in micellar solutions are extremely modest, of the order of 1 kcal mol(-1) or less. We applied a thermodynamic formalism to assess the effect of weakly interacting TM segments on the behavior of a covalently attached soluble domain. In the case of the ligand-bound EGFR ectodomain, we find that restriction of the ectodomain to the micellar phase by a hydrophobic TM, even in the absence of strong specific interactions, is largely sufficient to account for the previously reported increase in dimerization affinity.  相似文献   

15.
《Cytokine》2007,37(5-6):267-275
Objective: ErbB receptors and their ligands play crucial roles in development. During late gestation, they might also be involved in the pathogenesis of prematurity-associated disorders. ErbB receptor dimerization leads to a diversity of biologic signals. We studied the expression and localization patterns of erbB receptors in the developing human umbilical endothelial cell system. It is still unclear, whether expression patterns might be developmentally regulated and depend on the cell type studied. Methods: Primary human umbilical venous endothelial cells (HUVEC) and arterial endothelial cells (HUAEC) were isolated between 24 and 42 weeks of gestation and used for immunoprecipitation, Western blotting, and confocal microscopy. Results: All four erbB receptors were present in HUVEC and HUAEC. Expression patterns were similar for cell types at gestational ages examined. ErbB4 always co-precipitated with erbB1 in both cell types independent of the gestational age. Confocal microscopy revealed that all erbB receptors were localized in the nucleus, erbB1 and erbB3 in the nucleoli, while erbB2 and erbB4 spared the nucleolar region. All receptors showed a tendency to co-localize. Growth factor stimulation altered localization patterns. Cellular subfractionation experiments for erbB4 largely confirmed microscopy results. Pretreatment with lipopolysaccharide enhanced this nuclear localization of erbB4, particularly of its intracellular domain. Conclusions: All erbB receptors are present in both HUVEC and HUAEC at all gestational ages tested. ErbB receptor expression patterns were independent of the developmental stage of the endothelial cell, at least in the third trimester. We speculate that endothelial erbB receptors might play a role in normal development in mid and late gestation. We also speculate that these findings, together with the known involvement of erbB receptors in development, inflammation, and angiogenesis, will open new avenues for erbB receptor-related research in the pathogenesis of fetal and neonatal inflammation-associated disorders.  相似文献   

16.
Objective: ErbB receptors and their ligands play crucial roles in development. During late gestation, they might also be involved in the pathogenesis of prematurity-associated disorders. ErbB receptor dimerization leads to a diversity of biologic signals. We studied the expression and localization patterns of erbB receptors in the developing human umbilical endothelial cell system. It is still unclear, whether expression patterns might be developmentally regulated and depend on the cell type studied. Methods: Primary human umbilical venous endothelial cells (HUVEC) and arterial endothelial cells (HUAEC) were isolated between 24 and 42 weeks of gestation and used for immunoprecipitation, Western blotting, and confocal microscopy. Results: All four erbB receptors were present in HUVEC and HUAEC. Expression patterns were similar for cell types at gestational ages examined. ErbB4 always co-precipitated with erbB1 in both cell types independent of the gestational age. Confocal microscopy revealed that all erbB receptors were localized in the nucleus, erbB1 and erbB3 in the nucleoli, while erbB2 and erbB4 spared the nucleolar region. All receptors showed a tendency to co-localize. Growth factor stimulation altered localization patterns. Cellular subfractionation experiments for erbB4 largely confirmed microscopy results. Pretreatment with lipopolysaccharide enhanced this nuclear localization of erbB4, particularly of its intracellular domain. Conclusions: All erbB receptors are present in both HUVEC and HUAEC at all gestational ages tested. ErbB receptor expression patterns were independent of the developmental stage of the endothelial cell, at least in the third trimester. We speculate that endothelial erbB receptors might play a role in normal development in mid and late gestation. We also speculate that these findings, together with the known involvement of erbB receptors in development, inflammation, and angiogenesis, will open new avenues for erbB receptor-related research in the pathogenesis of fetal and neonatal inflammation-associated disorders.  相似文献   

17.
Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.  相似文献   

18.
Dopamine receptor signaling   总被引:13,自引:0,他引:13  
  相似文献   

19.
Dimerization and signal transduction of the growth hormone receptor   总被引:6,自引:0,他引:6  
GH binding to cell surface-localized GH receptors (GHRs) induces a conformational change of the dimerized receptors, resulting in activation of Janus kinase 2 and downstream signaling pathways. Interactions between the extracellular subdomain 2 of adjacent GHR polypeptides result in a 500-A2 contact interface, which has previously been suggested to stabilize the GH-(GHR)2 complex. In this study, we investigated further the role of subdomain 2 in GHR function. Amino acids that participate in (e.g. aspartic acid 152, tyrosine 200, or serine 201) or lie close to (e.g. asparagine 143 or cysteine 241) the contact interface were mutated in rabbit GHR. Surprisingly, none of the mutations affected GHR dimerization, as demonstrated by coimmunoprecipitation of a truncated, epitope-tagged GHR. However, signal transduction of GHR(D152H), GHR(Y200D), and GHR(S201K) mutants was precluded. More insight into the molecular mechanism of the signaling defect was obtained when we examined the effect of the mutations on the integrity of the GH-(GHR)2 complex in a protease-protection assay. In contrast to wild-type GHR, GHR(N143K), and GHR(C241S), the GHR(D152H), GHR(Y200D), and GHR(S201K) mutants were not protected against protease digestion by GH, indicating that a structural change is prevented. Together, we provide new evidence for a critical role of aspartic acid 152, tyrosine 200, and serine 201 of the GHR contact interface in the GH-induced conformational change to a signaling-competent complex rather than in GHR dimerization.  相似文献   

20.
The erbB receptor family consists of erbB1/epidermal growth factor receptor, erbB2/neu, erbB3, and erbB4, all of which have been implicated in cell proliferation, differentiation, and survival in several tissues. In the nervous system, these family members can function in a trophic capacity for certain subpopulations of neurons and some types of non-neuronal cells. Vestibular sensory epithelial cells and vestibular ganglion neurons are derived from ectodermal otic placode and are essential components of the peripheral vestibular system, the sensory system for balance. Recent studies in mammals suggest that certain ligands of the epidermal growth factor receptor can induce proliferation of vestibular sensory epithelial cells. We now show that vestibular ganglion neurons and vestibular sensory epithelial cells express all four erbB receptors in adult rats. Cultured vestibular ganglion neurons also expressed all four erbB family members and were therefore used to analyze the effects of modulating erbB signaling on differentiated vestibular ganglion neurons. Transforming growth factor-alpha (a ligand for epidermal growth factor receptor) and sensory and motor neuron-derived factor (a ligand for erbB3 and erbB4) promoted vestibular ganglion neuron viability, whereas epidermal growth factor (another ligand for epidermal growth factor receptor) did not. Glial growth factor 2 (another ligand for erbB3 and erbB4) and an antibody that blocks erbB2/neu-mediated signaling inhibited vestibular ganglion neuron viability. Collectively, these observations indicate that erbB signaling regulates the viability of differentiated otic placode-derived cells in mammals and suggest that exogenous modulation of erbB signaling in peripheral vestibular tissues may prove therapeutically useful in peripheral vestibular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号