首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Regulating the transition from centriole to basal body   总被引:3,自引:0,他引:3  
The role of centrioles changes as a function of the cell cycle. Centrioles promote formation of spindle poles in mitosis and act as basal bodies to assemble primary cilia in interphase. Stringent regulations govern conversion between these two states. Although the molecular mechanisms have not been fully elucidated, recent findings have begun to shed light on pathways that regulate the conversion of centrioles to basal bodies and vice versa. Emerging studies also provide insights into how defects in the balance between centrosome and cilia function could promote ciliopathies and cancer.  相似文献   

2.
Cholangiocytes, like most cells, express primary cilia extending from their membranes. These organelles function as antennae which detect stimuli from bile and transmit the information into cells regulating several signaling pathways involved in secretion, proliferation and apoptosis. The ability of primary cilia to detect different signals is provided by ciliary associated proteins which are expressed in its membrane. Defects in the structure and/or function of these organelles lead to cholangiociliopathies that result in cholangiocyte hyperproliferation, altered fluid secretion and absorption. Since primary cilia dysfunction has been observed in several epithelial tumors, including cholangiocarcinoma (CCA), primary cilia have been proposed as tumor suppressor organelles. In addition, the loss of cilia is associated with dysregulation of several molecular pathways resulting in CCA development and progression. Thus, restoration of the primary cilia may be a potential therapeutic approach for several ciliopathies and CCA.  相似文献   

3.
Meckel syndrome (MKS) is a lethal malformation disorder characterized classically by encephalocele, polycystic kidneys, and polydactyly. MKS is also one of the major contributors to syndromic neural tube defects (NTDs). Recent findings have shown primary cilia dysfunction in the molecular background of MKS, indicating that cilia are critical for early human development. However, even though four genes behind MKS have been identified to date, they elucidate only a minor proportion of the MKS cases. In this study, instead of traditional linkage analysis, we selected 10 nonrelated affected fetuses and looked for the homozygous regions shared by them. Based on this strategy, we identified the sixth locus and the fifth gene, CC2D2A (MKS6), behind MKS. The biological function of CC2D2A is uncharacterized, but the corresponding polypeptide is predicted to be involved in ciliary functions and it has a calcium binding domain (C2). Immunofluorescence staining of patient's fibroblast cells demonstrates that the cells lack cilia, providing evidence for the critical role of CC2D2A in cilia formation. Our finding is very significant not only to understand the molecular background of MKS, but also to obtain additional information about the function of the cilia, which can help to understand their significance in normal development and also in other ciliopathies, which are an increasing group of disorders with overlapping phenotypes.  相似文献   

4.
Once overlooked as an evolutionary vestige, the primary cilium has recently been the focus of intensive studies. Mounting data show that this organelle is a hub for various signaling pathways during vertebrate embryonic development and pattern formation. However, how cilia form and how cilia execute the sensory function still remain poorly understood. Cilia dysfunction is correlated with a wide spectrum of human diseases, now termed ciliopathies. Various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, have been implicated in cilia formation and/or function. Here we review and discuss the role of one particular group of small GTPase, Arf/Arl, in the context of cilia and ciliopathy.  相似文献   

5.
Cilia are highly specialized organelles that extend from the cell membrane and function as cellular signaling hubs. Thus, cilia formation and the trafficking of signaling molecules into cilia are essential cellular processes. TULP3 and Tubby (TUB) are members of the tubby-like protein (TULP) family that regulate the ciliary trafficking of G-protein coupled receptors, but the functions of the remaining TULPs (i.e., TULP1 and TULP2) remain unclear. Herein, we explore whether these four structurally similar TULPs share a molecular function in ciliary protein trafficking. We found that TULP3 and TUB, but not TULP1 or TULP2, can rescue the defective cilia formation observed in TULP3-knockout (KO) hTERT RPE-1 cells. TULP3 and TUB also fully rescue the defective ciliary localization of ARL13B, INPP5E, and GPR161 in TULP3 KO RPE-1 cells, while TULP1 and TULP2 only mediate partial rescues. Furthermore, loss of TULP3 results in abnormal IFT140 localization, which can be fully rescued by TUB and partially rescued by TULP1 and TULP2. TUB’s capacity for binding IFT-A is essential for its role in cilia formation and ciliary protein trafficking in RPE-1 cells, whereas its capacity for PIP2 binding is required for proper cilia length and IFT140 localization. Finally, chimeric TULP1 containing the IFT-A binding domain of TULP3 fully rescues ciliary protein trafficking, but not cilia formation. Together, these two TULP domains play distinct roles in ciliary protein trafficking but are insufficient for cilia formation in RPE-1 cells. In addition, TULP1 and TULP2 play other unknown molecular roles that should be addressed in the future.  相似文献   

6.
The internal organs of vertebrates show distinctive left-right asymmetry. Leftward extracellular fluid flow at the node (nodal flow), which is generated by the rotational movement of node cilia, is essential for left-right patterning in the mouse and other vertebrates. However, the identity of the pathways by which nodal flow is interpreted remains controversial as the molecular sensors of this process are unknown. In the current study, we show that the medaka left-right mutant abecobe (abc) is defective for left-right asymmetric expression of southpaw, lefty and charon, but not for nodal flow. We identify the abc gene as pkd1l1, the expression of which is confined to Kupffer's vesicle (KV, an organ equivalent to the node). Pkd1l1 can interact and interdependently colocalize with Pkd2 at the cilia in KV. We further demonstrate that all KV cilia contain Pkd1l1 and Pkd2 and left-right dynein, and that they are motile. These results suggest that Pkd1l1 and Pkd2 form a complex that functions as the nodal flow sensor in the motile cilia of the medaka KV. We propose a new model for the role of cilia in left-right patterning in which the KV cilia have a dual function: to generate nodal flow and to interpret it through Pkd1l1-Pkd2 complexes.  相似文献   

7.
Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.  相似文献   

8.
Inoue T  Ailion M  Poon S  Kim HK  Thomas JH  Sternberg PW 《Genetics》2007,177(2):809-818
Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to investigate the evolution of dauer formation in the genus Caenorhabditis at the molecular level, we isolated dauer-formation mutations in C. briggsae, a species closely related to the model organism C. elegans. We identified mutations in orthologs of C. elegans genes daf-2 (insulin receptor), daf-3 (Smad), and daf-4 (TGF-beta type 2 receptor), as well as genes required for formation of sensory cilia. Phenotypic analyses revealed that functions of these genes are conserved between C. elegans and C. briggsae. Analysis of C. briggsae mutations also revealed a significant difference between the two species in their responses to high temperatures (>26 degrees). C. elegans is strongly induced to form dauers at temperatures above 26 degrees, near the upper limit for growth of C. elegans. In contrast, C. briggsae, which is capable of growth at higher temperatures than C. elegans, lacks this response.  相似文献   

9.
10.
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question ‘how do cilia organize signalling?’. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.  相似文献   

11.
A role for Tctex-1 (DYNLT1) in controlling primary cilium length   总被引:1,自引:0,他引:1  
The microtubule motor complex cytoplasmic dynein is known to be involved in multiple processes including endomembrane organization and trafficking, mitosis, and microtubule organization. The majority of studies of cytoplasmic dynein have focused on the form of the motor that is built around the dynein-1 heavy chain. A second isoform, dynein heavy chain-2, and its specifically associated light intermediate chain, LIC3 (D2LIC), are known to be involved in the formation and function of primary cilia. We have used RNAi in human epithelial cells to define the cytoplasmic dynein subunits that function with dynein heavy chain 2 in primary cilia. We identify the dynein light chain Tctex-1 as a key modulator of cilia length control; depletion of Tctex-1 results in longer cilia as defined by both acetylated tubulin labeling of the axoneme and Rab8a labeling of the cilia membrane. Suppression of dynein heavy chain-2 causes concomitant loss of Tctex-1 and this correlates with an increase in cilia length. Compared to individual depletions, double siRNA depletion of DHC2 and Tctex-1 causes an even greater increase in cilia length. Our data show that Tctex-1 is a key regulator of cilia length and most likely functions as part of dynein-2.  相似文献   

12.
Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1) and somatostatin receptor 3 (Sstr3) colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.  相似文献   

13.
Primary cilia project from the surface of most vertebrate cells and are thought to be sensory organelles. Defects in primary cilia lead to cystic kidney disease, although the ciliary mechanisms that promote and maintain normal renal function remain incompletely understood. In this work, we generated a floxed allele of the ciliary assembly gene Ift20. Deleting this gene specifically in kidney collecting duct cells prevents cilia formation and promotes rapid postnatal cystic expansion of the kidney. Dividing collecting duct cells in early stages of cyst formation fail to properly orient their mitotic spindles along the tubule, whereas nondividing cells improperly position their centrosomes. At later stages, cells lacking cilia have increased canonical Wnt signaling and increased rates of proliferation. Thus, IFT20 functions to couple extracellular events to cell proliferation and differentiation.  相似文献   

14.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

15.
The primary cilia are microtubule-based organelles that protrude from most of the eukaryotic cells. Recognized as the cell's antenna, primary cilium functions as a signaling hub for many physiologically and developmentally important signaling cascades. Ciliary dysfunction causes a wide spectrum of syndromic human genetic diseases collectively termed “ciliopathies”. Mounting evidences have shown that various small GTPases have been implicated in the context of cilia as well as human ciliopathies. However, how these small GTPases affect cilia formation and function remains poorly understood. Here we review and discuss the ciliary role of three Arf-like small GTPases (Arls), Arl3, Arl6, and Arl13b.  相似文献   

16.
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.  相似文献   

17.
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

18.
《Organogenesis》2013,9(1):108-125
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

19.
Motile cilia produce large-scale fluid flows crucial for development and physiology. Defects in ciliary motility cause a range of disease symptoms including bronchiectasis, hydrocephalus, and situs inversus. However, it is not enough for cilia to be motile and generate a flow -- the flow must be driven in the proper direction. Generation of properly directed coherent flow requires that the cilia are properly oriented relative to tissue axes. Genetic, molecular, and ultrastructural studies have begun to suggest pathways linking cilia orientation to planar cell polarity (PCP) and other long-range positional cues and also suggest that cilia-driven flow can itself play a causal role in orienting the cilia that create it. Errors in cilia orientation have been observed in human ciliary disease patients, suggesting that orientation defects may constitute a novel class of ciliopathies with a distinct etiology at the cell biological level.  相似文献   

20.
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号