首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

2.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

3.
The ionic currents of smooth muscle cells isolated from the ctenophore Mnemiopsis were examined by using conventional two-electrode voltage clamp and whole-cell patch clamping methods. Several separable currents were identified. These include: (1) a transient and (2) a steady-state voltage-activated inward current; both are tetrodotoxin (TTX) and saxitoxin (STX) insensitive, partly reduced by decreasing external Ca2+ or Na+ or by addition of 5 mM Co2+, D-600 or verapamil and are totally blocked with 5 mM Cd2+; (3) an early, transient, cation-dependent, outward K+ current (IKCa/Na); (4) a transient, voltage-activated, outward K+ current provisionally identified as IA; (5) a delayed, steady-state, voltage-activated outward K+ current (IK) and (6) a late, transient, outward K+ current which is blocked by Cd2+ and evident only during long voltage pulses. Despite their phylogenic origin, most of these currents are similar to currents identified in many vertebrate smooth and cardiac muscle preparations, and other excitable cells in higher animals.  相似文献   

4.
胆固醇普遍存在于细胞膜中,其含量在细胞增殖、生长及各种疾病条件下会发生改变,这暗示胆固醇对细胞功能的调节起着重要的作用。运用全细胞膜片钳技术研究了胆固醇含量变化对海马神经细胞电压依赖钾电流的影响。实验观察到神经细胞经胆固醇去除剂β-甲基环化糊精(MβCD)处理后,胆固醇含量的减少促进了延迟整流钾电流IK的增加,且延缓了瞬间失活钾电流IA的失活。更进一步,延迟整流钾电流IK和瞬间失活钾电流IA分别经TEA和4-AP阻断后,MβCD对两种电流成分的影响显著降低。这一结果进一步表明胆固醇去除剂对电压依赖钾电流的上调是通过作用于IK和IA电流而共同实现的。基于电压依赖钾通道在神经细胞功能中的重要作用,实验结果暗示神经细胞胆固醇含量变化可对神经细胞的兴奋性起调节作用。  相似文献   

5.
Mochida S  Few AP  Scheuer T  Catterall WA 《Neuron》2008,57(2):210-216
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mutation of the IQ-like motif in the C terminus that blocks Ca(2+)/CaS-dependent facilitation of the P/Q-type Ca(2+) current markedly reduces facilitation of synaptic transmission. Deletion of the nearby calmodulin-binding domain, which inhibits CaS-dependent inactivation, substantially reduces depression of synaptic transmission. These results demonstrate that residual Ca(2+) in presynaptic terminals can act through CaS-dependent regulation of Ca(V)2.1 channels to induce short-term synaptic facilitation and rapid synaptic depression. Activity-dependent regulation of presynaptic Ca(V)2.1 channels by CaS proteins may therefore be a primary determinant of short-term synaptic plasticity and information-processing in the nervous system.  相似文献   

6.
7.
瞬间外向钾电流(IA)具有快速激活和失活等特征,是动作电位复极化早期外向钾离子电流的主要成分,广泛分布在海马神经元,树突处尤为突出.该电流通过减慢去极化速度和延缓动作电位的产生等作用,调节突触的输入和动作电位的反向传播,从而在信号整合及突触可塑性等过程中扮演重要角色.很多人类疾病,如癫痫性疾病等,和海马神经元的IA电流有关.  相似文献   

8.
9.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

10.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

11.
Fluctuations of the Ca2+-activated K+ current were measured in identified Aplysia neurones under voltage clamp conditions. The amplitude of IK,Ca was manipulated by ionophoretic injections of Ca2+. At small amplitudes of Ca2+-activated outward currents the variance of the Ca2+-activated current fluctuations increases linearly with the mean outward current. The single-channel conductance estimated from the variance of the fluctuations and the mean outward current is 11 +/- 3 pS at -30 mV. Power spectra of the Ca2+-activated K+ current can be fitted by the sum of two Lorentzian components with corner frequencies of about 10 Hz and 120 Hz.  相似文献   

12.
The effects of bethanidine sulphate, a pharmacological analog of the cardiac antibrillatory drug, bretylium tosylate, were studied on action potentials (APs) and K+, Na+, and Ca2+ currents of single cultured embryonic chick heart cells using the whole-cell current clamp and voltage clamp technique. Extracellular application of bethanidine (3 X 10(-4) M) increased the overshoot and the duration of the APs and greatly decreased the outward K+ current (IK) and potentiated the inward fast Na+ currents (INa) and the inward slow calcium current (ICa). However, intracellular introduction of bethanidine (10(-4) M) blocked INa. In isolated atria of rat, bethanidine increased the force of contraction in a dose-dependent manner. These findings suggest that when applied extracellularly, bethanidine exerts a potentiating effect on the myocardial fast Na+ current and slow Ca2+ current and an inhibitory effect of IK. The positive inotropic effect of bethanidine could be due, at least in part, to an increase of Ca2+ influx via the slow Ca2+ channel and the Na-Ca exchange. It is suggested that the decrease of IK by bethanidine may account for its antifibrillatory action.  相似文献   

13.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

14.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The present study was designed to investigate properties of ion channels in undifferentiated rabbit mesenchymal stem cells (MSCs) from bone marrow using whole-cell patch-clamp and RT-PCR techniques. It was found that three types of outward currents were present in rabbit MSCs, including an inward rectifier K(+) current (I(Kir)), a noise-like Ca(2+)-activated K(+) current (I(KCa)) co-present with delayed rectifier K(+) current (IK(DR)). I(Kir) was inhibited by Ba(2+), while I(KCa) was inhibited by paxilline (a blocker of big conductance I(KCa) channels) and clotrimazole (an inhibitor of intermediate conductance I(KCa) channels). IK(DR) exhibited a slow inactivation, "U-shaped" voltage-dependent inactivation, and slow recovery from inactivation, and the current was inhibited by tetraethylammonium or 4-aminopyridine. RT-PCR revealed the molecular identities for the functional ionic currents, including Kir1.1 (possibly responsible for I(Kir)), KCa1.1 and KCa3.1 (possibly responsible for I(KCa)), and Kv1.2, Kv2.1, and Kv2.2 (possibly responsible for IK(DR)). These results demonstrate for the first time that three types of functional ion channel currents (i.e., I(Kir), I(KCa), and IK(DR)) are present in rabbit MSCs from bone marrow.  相似文献   

16.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

17.
Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial and ventricular arrhythmias were previously observed with the use of optical mapping of perfused hearts from TNF mice. We therefore tested whether altered voltage-gated outward K+ and/or inward Ca2+ currents contribute to the altered action potential characteristics and the increased vulnerability to arrhythmias. Whole cell voltage-clamp recordings of K+ currents from left ventricular myocytes of TNF mice revealed an approximately 50% decrease in the rapidly activating, rapidly inactivating transient outward K+ current Ito and in the rapidly activating, slowly inactivating delayed rectifier current IK,slow1, an approximately 25% decrease in the rapidly activating, slowly inactivating delayed rectifier current IK,slow2, and no significant change in the steady-state current Iss compared with controls. Peak amplitudes and inactivation kinetics of the L-type Ca2+ current ICa,L were not altered. Western blot analyses revealed a reduction in the proteins underlying Kv4.2, Kv4.3, and Kv1.5. Thus decreased K+ channel expression is largely responsible for the prolonged APD in the TNF mice and may, along with abnormalities in Ca2+ handling, contribute to arrhythmias.  相似文献   

18.
FK-506, a widely used immunosuppressant, has caused a few clinical cases with QT prolongation and torsades de pointe at high blood concentration. The proarrhytmogenic potential of FK-506 was investigated in single rat ventricular cells using the whole cell clamp method to record action potentials (APs) and ionic currents. Fluorescence measurements of Ca2+ transients were performed with indo-1 AM using a multiphotonic microscope. FK-506 (25 micromol/l) hyperpolarized the resting membrane potential (RMP; -3 mV) and prolonged APs (AP duration at 90% repolarization increased by 21%) at 0.1 Hz. Prolongation was enhanced by threefold at 3.3 Hz, and early afterdepolarizations (EADs) occurred in 59% of cells. EADs were prevented by stronger intracellular Ca2+ buffering (EGTA: 10 vs. 0.5 mmol/l in the patch pipette) or replacement of extracellular Na+ by Li+, which abolishes Na+/Ca2+ exchange [Na+/Ca2+ exchanger current (INaCa)]. In indo-1-loaded cells, FK-506 generated doublets of Ca(2+) transients associated with increased diastolic Ca2+ in one-half of the cells. FK-506 reversibly decreased the L-type Ca2+ current (ICaL) by 25%, although high-frequency-dependent facilitation of ICaL persisted, and decreased three distinct K+ currents: delayed rectifier K+ current (IK; >80%), transient outward K+ current (<20%), and inward rectifier K+ current (IK1; >40%). A shift in the reversal potential of IK1 (-5 mV) accounted for RMP hyperpolarization. Numerical simulations, reproducing all experimental effects of FK-506, and the use of nifedipine showed that frequency-dependent facilitation of ICaL plays a role in the occurrence of EADs. In conclusion, the effects of FK-506 on the cardiac AP are more complex than previously reported and include inhibitions of IK1 and ICaL. Alterations in Ca2+ release and INaCa may contribute to FK-506-induced AP prolongation and EADs in addition to the permissive role of ICaL facilitation at high rates of stimulation.  相似文献   

19.
In the marine hypotrichous ciliate Euplotes vannus, the transient K+ outward current, IK fast, was studied by use of a single-microelectrode voltage-clamp equipment. Activation and inactivation kinetics, and steady-state inactivation are comparable to the properties of A-currents. Not typical for this type of current is its insensitivity to either 4-AP or 3,4-AP and its Ca2+ dependence which was derived from its inhibition by either extracellular Cd2+, La3+, D-600, or by intracellular BAPTA. Actual amplitudes of IK fast were obtained from a composite current, by subtraction of early parts of a slowly activating K+ current, IK slow, and of the early, transient Ca2+ inward current, ICa fast, that is typical for ciliates. IK fast counteracts ICa fast during the first milliseconds after onset of depolarization such that the composite current is purely outward directed.  相似文献   

20.
Zhang XF  Feng MF  Wu CH  Zhou PA 《生理学报》1998,50(2):153-162
以粒细胞巨噬细胞集落刺激因子(GM-CSF,16ng/ml)长期(0.5-6d)刺激小鼠腹腔渗了的巨噬细胞,采用全细胞膜片箝技术研究在GM-CSF刺激过程中细胞膜电流的变化,观察到一种GM-CSF诱导的瞬间失活的外向K电流,该电流在生理电压范围内可发生稳态失活,且当施加0.5HZ的去极化脉冲刺激时其失活具有频率依赖性。该电流对胞外4-AP高度敏感,胞内Ca^2+浓度「Ca^2+」升主可抑制其幅度,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号