首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

2.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

3.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

4.
Selection of oviposition sites in insects represents an important part of their ecological adaptation. In Drosophila fruit flies, adult preference for a particular oviposition site determines larval food, affecting fitness throughout the entire life cycle. Two odorant-binding proteins (OBPs) OBP57d and OBP57e were identified to be involved in the evolution of specific preference for the toxic plant Morinda citrifolia L. in D. sechellia Tsacas &; Bächli. D. melanogaster Meigen mutants for Obp57d and Obp57e showed enhanced preference for octanoic acid, but still not as much as D. sechellia does, indicating that other genes are also involved in the behavioral evolution of D. sechellia. Here, by using an improved method for behavioral assay, we found that the ablation of antenna enhanced the preference for octanoic acid in the Obp57d and Obp57e mutants to a level comparable with D. sechellia, suggesting that both olfactory and gustatory sensations are involved in oviposition site selection in response to octanoic acid. Behavioral analysis of gene-knockout strains revealed that Odorant receptor co-receptor (Orco) has little contribution compared with the effect of antennal ablation. These data suggest that in addition to Obp57d and Obp57e, the evolution of D. sechellia involves genetic changes in olfactory genes that function independently from Orco.  相似文献   

5.
Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host’s defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia’s toxins.  相似文献   

6.
Jones CD 《Genetica》2005,123(1-2):137-145
Drosophila sechellia is an island endemic of the Seychelles. After its geographic isolation on these islands, D. sechellia evolved into a host specialist on the fruit of Morinda citrifolia – a fruit often noxious and repulsive to Drosophila. Specialization on M. citrifolia required the evolution of a suite of adaptations, including resistance to and preference for some of the toxins found in this fruit. Several of these adaptive traits have been studied genetically. Here, I summarize what is known about the genetics of these traits and briefly describe the ecological and geographical context that shaped the evolution of these characters. The data from D. sechellia suggest that adaptations are not as genetically complex as historically thought, although almost all of the adaptations of D. sechellia involve several genes.  相似文献   

7.
Drosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant's fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue‐specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue‐specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.  相似文献   

8.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

9.
The underlying genetic basis of adaptive phenotypic changes is generally poorly understood, yet a growing number of case studies are beginning to shed light on important questions about the molecular nature and pleiotropy of such changes. We use Drosophila sechellia, a dietary specialist fruit fly that evolved to specialize on a single toxic host plant, Morinda citrifolia, as a model for adaptive phenotypic change and seek to determine the genetic basis of traits associated with host specialization in this species. The fruit of M. citrifolia is toxic to other drosophilids, primarily due to high levels of the defense chemical octanoic acid (OA), yet D. sechellia has evolved resistance to OA. Our prior work identified three Osiris family genes that reside in a fine‐mapped QTL for OA resistance: Osiris 6 (Osi6), Osi7, and Osi8, which can alter OA resistance in adult D. melanogaster when knocked down with RNA interference suggesting they may contribute to OA resistance in D. sechellia. Genetic mapping identified overlapping genomic regions involved in larval and adult OA resistance in D. sechellia, yet it remains unknown whether Osiris genes contribute to resistance in both life stages. Furthermore, because multiple genomic regions contribute to OA resistance, we aim to identify other gene(s) involved in this adaptation. Here, we identify candidate larval OA resistance genes using RNA sequencing to measure genome‐wide differential gene expression in D. sechellia larvae after exposure to OA and functionally test identified genes for a role in OA resistance. We then test the Osiris genes previously shown to alter adult OA resistance for effects on OA resistance in larvae. We found that Osi8 knockdown decreased OA resistance in D. melanogaster larvae. These data suggest that evolved changes in Osi8 could impact OA resistance in multiple life stages while Osi6 and Osi7 may only impact adult resistance to OA.  相似文献   

10.
Chemical recognition is essential for survival and reproduction. Adaptive evolution has resulted in diverse chemoreceptor families, in which polymorphisms contribute to individual variation in chemosensation. To gain insights into the genetic determinants of individual variation in odorant recognition, we measured olfactory responses to two structurally similar odorants in a population of wild-derived inbred lines of Drosophila melanogaster. Odorant-binding proteins (OBPs) are the first components of the insect olfactory system to encounter odorants. Previously four single-nucleotide polymorphisms (SNPs) in the Obp99 group were associated with variation in olfactory responses to benzaldehyde. Here, we identify six different SNPs that are associated with variation in responses to a structurally similar odorant, acetophenone, in the same Obp genes. Five SNPs are in coding regions of Obp99b and Obp99d and one SNP is in the 3′-untranslated region of Obp99a (A610G). We found that the 610G allele is associated with higher response scores to acetophenone than the 610A allele, but with lower expression of Obp99a, suggesting that binding of acetophenone to Opb99a might limit rather than facilitate access to odorant receptors. Our results show that overlapping sets of OBPs contribute to odorant recognition for structurally similar odorants, but that different SNPs are associated with odorant-specific individual variation. Thus, dual olfactory recognition where OBPs regulate odorant access to receptors may enhance olfactory discrimination.ADAPTIVE evolution in diverse chemical environments has resulted in large multigene chemoreceptor families, including odorant-binding protein (Obp) genes, odorant receptor (Or) genes, and gustatory receptor (Gr) genes (Hekmat-Scafe et al. 2002; Robertson et al. 2003; Nozawa and Nei 2007; Nei et al. 2008; Su et al. 2009). Polymorphisms in these chemoreceptor genes contribute to individual variation in chemosensory behavior (Keller et al. 2007; Wang et al. 2007). At the same time, combinatorial recognition of odorants may contribute functional redundancy, which allows individual variation without compromising overall olfactory ability. This may be the reason why segregating null alleles of chemoreceptor genes can be maintained within a population (Takahashi and Takano-Shimizu 2005; Wang et al. 2007). Drosophila melanogaster presents a favorable model for investigating the genetic basis of individual variation in olfactory discrimination, because the genome can be manipulated readily. Furthermore, flies can be inbred, which enables repeated behavioral measurements on identical genotypes under controlled environmental conditions. In addition, both the olfactory and the gustatory systems of Drosophila have been well characterized (Su et al. 2009; Yarmolinsky et al. 2009). Convergent projections of olfactory neurons expressing distinct odorant receptors have been mapped to specific glomeruli in the antennal lobe (Gao et al. 2000; Vosshall et al. 2000), and detailed electrophysiological studies on transgenic flies have identified molecular response profiles of a large fraction of the odorant receptor repertoire (de Bruyne et al. 2001). Surprisingly, however, behavioral responses to odorants do not necessarily conform to predictions based on electrophysiological response profiles (Keller and Vosshall 2007).Whereas Drosophila odorant receptors have been studied extensively, less is known about the function of odorant-binding proteins (OBPs) in mediating odor recognition and olfactory discrimination. OBPs are secreted by support cells in olfactory sensilla into the aqueous perilymph that surrounds olfactory dendrites and are thought to facilitate solubilization and transport of hydrophobic odorants, thereby either promoting or limiting access of odorants to odorant receptors (Steinbrecht 1998). For example, the pheromone-binding protein of the silk moth, Bombyx mori, binds and releases bombykol in a pH-dependent manner at the membrane interface (Wojtasek and Leal 1999; Sakurai et al. 2004). In D. melanogaster, an OBP, Lush, is essential for activation of the Or67d receptor by the pheromone cis-vaccenyl acetate in trichoid sensilla of the Drosophila third antennal segment (Ha and Smith 2006; Kurtovic et al. 2007). Binding of the pheromone causes a conformational transition in Lush, which enables this OBP to activate the Or67d receptor (Laughlin et al. 2008). Lush also interacts with short chain alcohols (Kim et al. 1998), but recognition of alcohols by Lush does not involve a conformation change and, thus, proceeds via a different mechanism (Stower and Logan 2008).Polymorphisms in Obp genes can serve as a substrate for natural selection and contribute to speciation. A polymorphism in Obp57e is responsible for differences in host plant preference between D. sechellia and D. melanogaster. D. melanogaster flies lacking the Obp57e and Obp57d genes were no longer repelled by hexanoic and octanoic acid, toxins produced by Morinda citrifolia, the host plant for D. sechellia. Here, inactivation of an Obp gene has enabled D. sechellia to occupy a specialist evolutionary niche (Matsuo et al. 2007). Differences in expression levels between Ors and Obps between D. sechellia and D. simulans have also been reported and postulated to contribute to the evolution of host plant preferences (Kopp et al. 2008).Despite the demonstrated importance of OBPs in pheromone and host plant recognition, little is known about how naturally occurring allelic variation in Obp genes affects individual variation in olfactory behavior. Previously, we identified polymorphisms associated with natural variation in olfactory behavior in response to benzaldehyde in Obp99a, Obp99c, and Obp99d in a population of wild-derived inbred lines of D. melanogaster (Wang et al. 2007). These studies indicated that these OBPs are likely to recognize benzaldehyde in a combinatorial manner, similar to odorant recognition by mammalian odorant receptors (Malnic et al. 1999). This observation enables us to begin to explore OBP odorant response profiles using a population genetics approach that capitalizes on naturally occurring mutations that affect behavior. As a first step, we asked whether variation in responses to odorants that are chemically similar would be associated with the same or overlapping sets of OBPs and, if so, whether the same or different polymorphisms in these OBPs would contribute to individual variation for olfactory behavior in response to these odorants. We focused on genes of the Obp99 group, previously associated with phenotypic variation in response to benzaldehyde. We obtained complete sequences of these genes from 297 inbred lines from the same wild-derived inbred population of D. melanogaster and measured variation in olfactory behavior in response to acetophenone, which is structurally similar to benzaldehyde. These odorants occur in fruits from host plants on which flies from the Raleigh population feed (e.g., apples and peaches). We find that overlapping sets of OBPs contribute to recognition of these two odorants, but that different SNPs are associated with odorant-specific individual variation.  相似文献   

11.
The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.  相似文献   

12.
13.
The Dobzhansky–Muller model posits that intrinsic postzygotic reproductive isolation—the sterility or lethality of species hybrids—results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hybrid incompatibility that evolves between two species, however, depends on the particular evolutionary history of the causative substitutions. An allele that is functionally derived in one species can be incompatible with an allele that is functionally derived in the other species (a derived-derived hybrid incompatibility). But an allele that is functionally derived in one species can also be incompatible with an allele that has retained the ancestral state in the other species (a derived-ancestral hybrid incompatibility). The relative abundance of such derived-derived vs. derived-ancestral hybrid incompatibilities is unknown. Here, we characterize the genetics and evolutionary history of a lethal hybrid incompatibility between Drosophila mauritiana and its two sibling species, D. sechellia and D. simulans. We show that a hybrid lethality factor(s) in the pericentric heterochromatin of the D. mauritiana X chromosome, hybrid lethal on the X (hlx), is incompatible with a factor(s) in the same small autosomal region from both D. sechellia and D. simulans, Suppressor of hlx [Su(hlx)]. By combining genetic and phylogenetic information, we infer that hlx-Su(hlx) hybrid lethality is likely caused by a derived-ancestral incompatibility, a hypothesis that can be tested directly when the genes are identified.  相似文献   

14.
The odorant-binding protein (OBP) functions in chemosensation in insects. Two OBP genes, Obp57d and Obp57e, are involved in the evolution of the unique host-plant preference in Drosophila sechellia. Comparative analysis of the Obp57d/e genomic sequences in the Drosophila melanogaster species group has revealed that the rapid evolution of Obp57d and Obp57e has resulted in functional divergence between the two genes. Here, using D. melanogaster knockout strains generated by gene targeting, we examined the roles of Obp57d and Obp57e in behavioral response to a series of fatty acids. In the taste-based oviposition-site preference assay, the knockout flies showed stronger preference for acids than wild-type flies, indicating that the normal functions of Obp57d and Obp57e are associated with the suppression of positive preference for C6-C9 acids. Heterozygotes for each knockout haplotype also exhibited a significantly different behavioral response compared with wild-type flies, suggesting that Obp57d and Obp57e have a gene dosage effect on behavior. In contrast, the wild-type and knockout flies exhibited similar responses in the feeding assay and the odor-based free-walking assay, suggesting that the two OBPs' contribution to feeding and olfactory behaviors is small. Taken together, our results demonstrated that each of Obp57d and Obp57e in D. melanogaster contributes to the determination of reproductive sites, suggesting that the two OBP genes play an important role in ecological adaptation of Drosophila.  相似文献   

15.
Glucosinolates are token stimuli in host selection of many crucifer specialist insects, but the underlying molecular basis for host selection in these insects remains enigmatic. Using a combination of behavioral, electrophysiological, and molecular methods, we investigate glucosinolate receptors in the cabbage butterfly Pieris rapae. Sinigrin, as a potent feeding stimulant, elicited activity in larval maxillary lateral sensilla styloconica, as well as in adult medial tarsal sensilla. Two P. rapae gustatory receptor genes PrapGr28 and PrapGr15 were identified with high expression in female tarsi, and the subsequent functional analyses showed that Xenopus oocytes only expressing PrapGr28 had specific responses to sinigrin; when ectopically expressed in Drosophila sugar sensing neurons, PrapGr28 conferred sinigrin sensitivity to these neurons. RNA interference experiments further showed that knockdown of PrapGr28 reduced the sensitivity of adult medial tarsal sensilla to sinigrin. Taken together, we conclude that PrapGr28 is a gustatory receptor tuned to sinigrin in P. rapae, which paves the way for revealing the molecular basis of the relationships between crucifer plants and their specialist insects.  相似文献   

16.
Isaya Higa  Yoshiaki Fuyama 《Genetica》1993,88(2-3):129-136
To reveal the genetic mechanism of host selection in a monophagous fruit flyDrosophila sechellia, olfactory responses and oviposition preferences of this species were compared with those of closely related polyphagous species,D. simulans andD. melanogaster. Adult flies ofD. sechellia were strongly attracted to the ripe fruit ofMorinda citrifolia which is known to be the sole breeding site of this species. They were also attracted to the odor ofn-caproic acid which is contained in the ripe fruit ofM. citrifolia and is presumably responsible for the characteristic odor of the fruit. In contrast,D. simulans andD. melanogaster showed a strong repulsion ton-caproic acid. In parallel with the olfactory responses,D. sechellia females laid eggs preferentially on a medium containingn-caproic acid, to which the other two species showed an aversion. Genetic analyses using the hybrid progeny betweenD. sechellia andD. simulans suggested that the species differences in these behaviors are controlled by gene(s) located on the second chromosome.  相似文献   

17.
18.
Sequence differentiation has been widely studied between populations and species, whereas interest in expression divergence is relatively recent. Using microarrays, we compared four geographically distinct populations of Drosophila simulans and a population of Drosophila sechellia, and interspecific hybrids. We observed few differences between populations, suggesting a slight population structure in D. simulans. This structure was observed in direct population comparisons, as well as in interspecific comparisons (hybrids vs. parents, D. sechellia vs. D. simulans). Expression variance is higher in the French and Zimbabwean populations than in the populations from the ancestral range of D. simulans (Kenya and Seychelles). This suggests a large scale phenomenon of decanalization following the invasion of a new environment. Comparing D. simulans and D. sechellia, we revealed 304 consistently differentially expressed genes, with striking overrepresentation of genes of the cytochrome P450 family, which could be related to their role in detoxification as well as in hormone regulation. We also revealed differences in genes involved in Juvenile hormone and Dopamine differentiation. We finally observed very few differentially expressed genes between hybrids and parental populations, with an overrepresentation of X-linked genes.  相似文献   

19.
20.
Drosophila simulans and D. sechellia are sibling species, the former cosmopolitan and the latter restricted to the Seychelles Islands. We used classical genetic analysis to measure the numbers and effects of genes responsible for reproductive isolation and morphological differences in male genitalia between these species. At least five loci are responsible for male sterility in hybrids, with the strongest effects produced by at least two genes on the X chromosome. At least three (and probably four) loci are responsible for the interspecific difference in the size of the posterior process of the male genital arch. These genetic results, as well as the pattern of morphological divergence between the species, show several parallels with the divergence between D. simulans and its other island relative, D. mauritiana. We also present the DNA sequence of a 4.5 kilobase region containing the alcohol dehydrogenase (Adh) locus of D. sechellia, and combine this with previous data to reconstruct the phylogenies of the three species and their more distant relative D. melanogaster. Both D. mauritiana and D. sechellia are very closely related to D. simulans. Although most phylogenies show the two island species to be independent offshoots of the D. simulans lineage (with D. sechellia the more recent), the branch points are too close to make this conclusion unambiguous. The genetic and evolutionary parallels between the simulans/mauritiana and the simulans/sechellia divergences may therefore represent either a striking evolutionary convergence or a close common ancestry of the island species. A comparison of Adh alleles within species shows that the divergence among them may be almost as large as among alleles from different species. We conclude that many of the nucleotide differences among these species actually represent polymorphisms within common ancestors. It may be difficult to build accurate phylogenies using only a single DNA sequence from each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号