首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钠离子通道与蜜蜂狄斯瓦螨对氟胺氰菊酯的抗性机理   总被引:1,自引:0,他引:1  
周婷  王强  姚军 《昆虫知识》2003,40(6):491-495
狄斯瓦螨Varroadestructor是全世界蜜蜂最严重的寄生虫 ,目前 ,它对主要防治药物———拟除虫菊酯类的氟胺氰菊酯已产生明显抗性 ,严重影响其防治效果。近年来神经生理学研究结果证实 :电压门控的钠离子通道是拟除虫菊酯作用的位点。钠通道结构的改变 ,是拟除虫菊酯类杀虫剂毒理的主要基础 ,也是产生抗药性的基础。该文介绍了近年来国内外研究电压门控钠离子通道、拟除虫菊酯对钠通道的作用、钠通道与拟除虫菊酯的抗性和狄斯瓦螨对氟胺氰菊酯抗性机理研究的新进展  相似文献   

2.
Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.  相似文献   

3.
A new class of sodium channel blocker insecticides (SCBIs), which include indoxacarb, its active metabolite, DCJW, and metaflumizone, preferably block inactivated states of both insect and mammalian sodium channels in a manner similar to that by which local anesthetic (LA) drugs block mammalian sodium channels. A recent study showed that two residues in the cockroach sodium channel, F1817 and Y1824, corresponding to two key LA-interacting residues identified in mammalian sodium channels are not important for the action of SCBIs on insect sodium channels, suggesting unique interactions of SCBIs with insect sodium channels. However, the mechanism of action of LAs on insect sodium channels has not been investigated. In this study, we examined the effects of lidocaine on a cockroach sodium channel variant, BgNa(v)1-1a, and determined whether F1817 and Y1824 are also critical for the action of LAs on insect sodium channels. Lidocaine blocked BgNa(v)1-1a channels in the resting state with potency similar to that observed in mammalian sodium channels. Lidocaine also stabilized both fast-inactivated and slow-inactivated states of BgNa(v)1-1a channels, and caused a limited degree of use- and frequency-dependent block, major characteristics of LA action on mammalian sodium channels. Alanine substitutions of F1817 and Y1824 reduced the sensitivity of the BgNa(v)1-1a channel to the use-dependent block by lidocaine, but not to tonic blocking and inactivation stabilizing effects of lidocaine. Thus, similar to those on mammalian sodium channels, F1817 and Y1824 are important for the action of lidocaine on cockroach sodium channels. Our results suggest that the receptor sites for lidocaine and SCBIs are different on insect sodium channels.  相似文献   

4.
In a previous study, we showed that two alternative exons (G1 and G2 encoding IIIS3-S4) were involved in the differential sensitivity of two cockroach sodium channel splice variants, BgNa(v)1-1 and BgNa(v)2-1 (previously called KD1 and KD2), to deltamethrin, a pyrethroid insecticide (Tan, et al., 2002b. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J. Neurosci. 22, 5300-5309.). Here, we report the identification of an amino acid residue in exon G2 that contributes to the low deltamethrin sensitivity of BgNa(v)2-1. Replacement of A1356 in BgNa(v)2-1 with the corresponding V1356 in BgNa(v)1-1 enhanced the sensitivity of the BgNa(v)2-1 channel to deltamethrin by six-fold. Conversely, substitution of V1356 with A1356 in BgNa(v)1-1 produced a recombinant BgNa(v)1-1 channel that was 5-fold more resistant to deltamethrin. These results demonstrate that A1356 contributes to the low sensitivity of BgNa(v)2-1 to deltamethrin. A1356V substitution also shifted the voltage-dependence of activation by 10 mV in the hyperpolarizing direction. Possible mechanisms by which this amino acid change affects the action of pyrethroids on the sodium channel are discussed.  相似文献   

5.
6.
Pyrethroids are a class of voltage-dependent sodium channel modifiers widely used as insecticides for control of disease vectors and agricultural pests. Many insect populations have developed resistance to pyrethroids linked to nervous system insensitivity and structural mutations in neuronal sodium channels. Pyrethroid resistant strains of the moth Heliothis virescens carry single point mutations leading to amino acid substitutions in either transmembrane segment I-S6 (V421M) or II-S6 (L1029H) of the para-homologous sodium channel. We analyzed the consequences of V421M and L1029H mutations constructed in the Drosophila para sodium channel heterologously expressed in Xenopus oocytes, and found that both mutations confer channel insensitivity to permethrin, with the L1029H mutation having a more pronounced effect. Both mutations also modify the intrinsic voltage-dependent gating properties of the channel, but L1029H less so than V421M. These results suggest that mutation V421M exacts a higher fitness cost than L1029H, providing a plausible explanation for genetic succession observed in field strains, where V421M was replaced by L1029H during the past decade.  相似文献   

7.
Voltage-gated sodium channels are essential for the generation and propagation of action potentials in most excitable cells. They are the target sites of several classes of insecticides and acaricides. Isolation of full-length sodium channel cDNA is a critical and often difficult step toward an understanding of insecticide and acaricide resistance. We previously cloned and sequenced two overlapping cDNA clones covering segment 3 of domain II (IIS3) to segment 6 of domain IV (IVS6) of an arachnid sodium channel gene (named VmNa) from the varroa mite (Varroa destructor) (J. Apicultureal Res. 40 (2002) 5.). In this study, we isolated three more overlapping cDNA clones and revealed the entire coding region of VmNa (Genbank accession number: AY259834), thus providing the first complete cDNA sequence of an arachnid sodium channel gene. The composite VmNa cDNA contains 6645 nucleotides with an open reading frame encoding 2215 amino acids. The deduced amino acid sequence of VmNa shares a 51% overall identity with Drosophila Para and a 41% identity with the mammalian sodium channel alpha-subunit Na(v)1.2. All hallmarks of sodium channel proteins are conserved in the VmNa protein. Three optional exons and one retained intron were identified in VmNa. The precise position and size of only one exon is conserved in three insect sodium channel genes and mammalian Na(v)1.6 genes in human, mouse and fish, whereas the other three are novel. Interestingly, one of the novel exons is located in the C-terminus, where no alternative exons have been identified in any other sodium channel gene.  相似文献   

8.
The aim of this study was to explore the extent of varroa mite resistance to fluvalinate in Israel and to determine the underlying biochemical mechanism. Assays at different apiaries indicated varroa mite resistance at three of the five sites tested. Dose response assays conducted with tau-fluvalinate on mites obtained from different sites indicated uneven resistance. A monooxygenase assay revealed an increased rate (approximately 20-fold) of activity in mites that were not controlled by the pesticide, as compared to activity in mites from untreated colonies. A minor, 1.5–2.5 fold, increase of esterase activity was also noted in the resistant mites. This first demonstration of a fluvalinate-resistance mechanism in varroa mites points to the need for more vigorous resistance management practices to control the pest.  相似文献   

9.
Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the ??-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present.  相似文献   

10.
Pyrethroid insecticide resistance due to reduced nerve sensitivity, known as knockdown resistance (kdr or kdr-type), is linked to multiple point mutations in the para-homologous sodium channel genes. Previously we demonstrated that two mutations (E434K and C764R) in the German cockroach sodium channel greatly enhanced the ability of the L993F mutation (a known kdr -type mutation) to reduce sodium channel sensitivity to deltamethrin, a pyrethroid insecticide. Neither E434K nor C764R alone, however, altered sodium channel sensitivity. To examine whether E434K and C764R also enhance the effect of pyrethroid resistance-associated sodium channel mutations identified in other insects, we introduced a V to M mutation (V409M) into the cockroach sodium channel protein at the position that corresponds to the V421M mutation in the Heliothis virescens sodium channel protein. We found that the V409M mutation alone modified the gating properties of the sodium channel and reduced channel sensitivity to deltamethrin by 10-fold. Combining the V409M mutation with either the E434K or C764K alone did not reduce the V409M channel sensitivity to deltamethrin further. However, the triple mutation combination (V409M, E434K and C764R) dramatically reduced channel sensitivity by 100-fold compared with the wild-type channel. These results suggest that the E434K and C764R mutations are important modifiers of sodium channel sensitivity to pyrethroid insecticides.  相似文献   

11.
Indoxacarb and metaflumizone are two sodium channel blocker insecticides (SCBIs). They preferably bind to and trap sodium channels in the slow-inactivated non-conducting state, a mode of action similar to that of local anesthetics (LAs). Recently, two sodium channel mutations, F1845Y (F4i15Y) and V1848I (V4i18I), in the transmembrane segment 6 of domain IV (IVS6), were identified to be associated with indoxacarb resistance in Plutella xylostella. F4i15 is known to be critical for the action of LAs on mammalian sodium channels. Previously, mutation F4i15A in a cockroach sodium channel, BgNav1-1a, has been shown to reduce the action of lidocaine, a LA, but not the action of SCBIs. In this study, we introduced mutations F4i15Y and V4i18A/I individually into the cockroach sodium channel, BgNav1-1a, and conducted functional analysis of the three mutants in Xenopus oocytes. We found that both the F4i15Y and V4i18I mutations reduced the inhibition of sodium current by indoxacarb, DCJW (an active metabolite of indoxacarb) and metaflumizone. F4i15Y and V4i18I mutations also reduced the use-dependent block of sodium current by lidocaine. In contrast, substitution V4i18A enhanced the action metaflumizone and lidocaine. These results show that both F4i15Y and V4i18I mutations may contribute to target-site resistance to SCBIs, and provide the first molecular evidence for common amino acid determinants on insect sodium channels involved in action of SCBIs and LA.  相似文献   

12.
Pyrethroid insecticides alter the normal gating of voltage-gated sodium channels in the nervous system. Three sodium channel mutations (E434K, C764R, L993F) were recently identified in pyrethroid resistant German cockroach populations. In this report, we show that the L993F mutation decreased sodium channel sensitivity to the pyrethroid, deltamethrin, by five-fold in Xenopus oocytes. In contrast, neither E434K nor C764R alone decreased channel sensitivity to deltamethrin. However, E434K or C764R combined with L993F reduced deltamethrin sensitivity by 100-fold. Furthermore, concomitant presence of all three mutations (KRF) reduced channel sensitivity to deltamethrin by 500-fold. None of the mutations significantly affected channel gating. However, sodium current amplitudes from the mutant sodium channel carrying either E434K or C764R alone were much reduced compared to those of the wild-type channel or the channel carrying the double or triple mutations (KF, RF and KRF). These results indicated that evolution of sodium channel insensitivity in the German cockroach is achieved by sequential selection of a primary mutation L993F and two secondary mutations E434K and C764R, and concomitant presence of all three mutations dramatically reduced sodium channel sensitivity to deltamethrin.  相似文献   

13.
Ion permeation through voltage-gated sodium channels is modulated by various drugs and toxins. The atomistic mechanisms of action of many toxins are poorly understood. A steroidal alkaloid batrachotoxin (BTX) causes persistent channel activation by inhibiting inactivation and shifting the voltage dependence of activation to more negative potentials. Traditionally, BTX is considered to bind at the channel-lipid interface and allosterically modulate the ion permeation. However, amino acid residues critical for BTX action are found in the inner helices of all four repeats, suggesting that BTX binds in the pore. In the octapeptide segment IFGSFFTL in IIIS6 of a cockroach sodium channel BgNa(V), besides Ser_3i15 and Leu_3i19, which correspond to known BTX-sensing residues of mammalian sodium channels, we found that Gly_3i14 and Phe_3i16 are critical for BTX action. Using these data along with published data as distance constraints, we docked BTX in the Kv1.2-based homology model of the open BgNa(V) channel. We arrived at a model in which BTX adopts a horseshoe conformation with the horseshoe plane normal to the pore axis. The BTX ammonium group is engaged in cation-π interactions with Phe_3i16 and BTX moieties interact with known BTX-sensing residues in all four repeats. Oxygen atoms at the horseshoe inner surface constitute a transient binding site for permeating cations, whereas the bulky BTX molecule would resist the pore closure, thus causing persistent channel activation. Our study reinforces the concept that steroidal sodium channel agonists bind in the inner pore of sodium channels and elaborates the atomistic mechanism of BTX action.  相似文献   

14.
In order to decrease the variability of formic acid treatments against the honey bee parasite the varroa mite, Varroa destructor, it is necessary to determine the dose-time combination that best controls mites without harming bees. The concentration × time (CT) product is a valuable tool for studying fumigants and how they might perform under various environmental conditions. This laboratory study is an assessment of the efficacy of formic acid against the varroa mite under a range of formic acid concentrations and temperatures. The objectives are 1) to determine the effect of temperature and dose of formic acid on worker honey bee and varroa mite survival, 2) to determine the CT50 products for both honey bees and varroa mites and 3) to determine the best temperature and dose to optimize selectivity of formic acid treatment for control of varroa mites. Worker honey bees and varroa mites were fumigated at 0, 0.01, 0.02, 0.04, 0.08, and 0.16 mg/L at 5, 15, 25, and 35 °C for 12 d. Mite and bee mortality were assessed at regular intervals. Both mite and bee survival were affected by formic acid dose. Doses of 0.08 and 0.16 mg/L were effective at killing mites at all temperatures tested above 5 °C. There was a significant interaction between temperature, dose, and species for the CT50 product. The difference between the CT50 product of bees and mites was significant at only a few temperature-dose combinations. CT product values showed that at most temperatures the greatest fumigation efficiency occurred at lower doses of formic acid. However, the best fumigation efficiency and selectivity combination for treatments occurred at a dose of 0.16 mg/L when the temperature was 35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.  相似文献   

16.
Point mutations in the para-orthologous sodium channel alpha-subunit of the head louse (M815I, T917I, and L920F) are associated with permethrin resistance and DDT resistance. These mutations were inserted in all combinations using site-directed mutagenesis at the corresponding amino acid sequence positions (M827I, T929I, and L932F) of the house fly para-orthologous voltage-sensitive sodium channel alpha-subunit (Vssc1(WT)) gene and heterologously co-expressed with the sodium channel auxiliary subunit of house fly (Vsscbeta) in Xenopus oocytes. The double mutant possessing M827I and T929I (Vssc1(MITI)/Vsscbeta) caused a approximately 4.0mV hyperpolarizing shift and the triple mutant, Vssc1(MITILF)/Vsscbeta, caused a approximately 3.2mV depolarizing shift in the voltage dependence of activation curves. Vssc1(MITI)/Vsscbeta, Vssc1(TILF)/Vsscbeta, and Vssc1(MITILF)/Vsscbeta caused depolarizing shifts ( approximately 6.6, approximately 7.6, and approximately 8.8mV, respectively) in the voltage dependence of steady-state inactivation curves. The M827I and L932F mutations reduced permethrin sensitivity when expressed alone but the T929I mutation, either alone or in combination, virtually abolished permethrin sensitivity. Thus, the T929I mutation is the principal cause of permethrin resistance in head lice. Comparison of the expression rates of channels containing single, double and triple mutations with that of Vssc1(WT)/Vsscbeta channels indicates that the M827I mutation may play a role in rescuing the decreased expression of channels containing T929I.  相似文献   

17.
The super-kdr insecticide resistance trait of the house fly confers resistance to pyrethroids and DDT by reducing the sensitivity of the fly nervous system. The super-kdr genetic locus is tightly linked to the Vssc1 gene, which encodes a voltage-sensitive sodium channel alpha subunit that is the principal site of pyrethroid action. DNA sequence analysis of Vssc1 alleles from several independent super-kdr fly strains identified two amino acid substitutions associated with the super-kdr trait: replacement of leucine at position 1014 with phenylalanine (L1014F), which has been shown to cause the kdr resistance trait in this species, and replacement of methionine at position 918 with threonine (M918T). We examined the functional significance of these mutations by expressing house fly sodium channels containing them in Xenopus laevis oocytes and by characterizing the biophysical properties and pyrethroid sensitivities of the expressed channels using two-electrode voltage clamp. House fly sodium channels that were specifically modified by site-directed mutagenesis to contain the M918T/L1014F double mutation gave reduced levels of sodium current expression in oocytes but otherwise exhibited functional properties similar to those of wildtype channels and channels containing the L1014F substitution. However, M918T/L1014F channels were completely insensitive to high concentrations of the pyrethroids cismethrin and cypermethrin. House fly sodium channels specifically modified to contain the M918T single mutation, which is not known to exist in nature except in association with the L1014F mutation, gave very small sodium currents in oocytes. Assays of these currents in the presence of high concentrations of cismethrin suggest that this mutation alone is sufficient to abolish the pyrethroid sensitivity of house fly sodium channels. These results define the functional significance of the Vssc1 mutations associated with the super-kdr trait of the house fly and are consistent with the hypothesis that the super-kdr trait arose by selection of a second-site mutation (M918T) that confers to flies possessing it even greater resistance than the kdr allele containing the L1014F mutation.  相似文献   

18.
Li D  Xiao Y  Hu W  Xie J  Bosmans F  Tytgat J  Liang S 《FEBS letters》2003,555(3):616-622
Hainantoxin-I is a novel peptide toxin, purified from the venom of the Chinese bird spider Selenocosmia hainana (=Ornithoctonus hainana). It includes 33 amino acid residues with a disulfide linkage of I-IV, II-V and III-VI, assigned by partial reduction and sequence analysis. Under two-electrode voltage-clamp conditions, hainantoxin-I can block rNa(v)1.2/beta(1) and the insect sodium channel para/tipE expressed in Xenopus laevis oocytes with IC(50) values of 68+/-6 microM and 4.3+/-0.3 microM respectively. The three-dimensional solution structure of hainantoxin-I belongs to the inhibitor cystine knot structural family determined by two-dimensional (1)H nuclear magnetic resonance techniques. Structural comparison of hainantoxin-I with those of other toxins suggests that the combination of the charged residues and a vicinal hydrophobic patch should be responsible for ligand binding. This is the first report of an insect sodium channel blocker from spider venom and it provides useful information for the structure-function relationship studies of insect sodium channels.  相似文献   

19.
Permethrin as a topical acaricide cream is widely used to treat scabies. The neuronal voltage-sensitive sodium channel (Vssc), necessary for the generation of action potentials in excitable cells, is the target of pyrethroid acaricides such as permethrin. Pyrethroid resistance has been linked to specific mutations in the Vssc gene. Following the partial sequencing of the Vssc gene in the scabies mite Sarcoptes scabiei (L.) (Astigmata: Sarcoptidae), we compared Vssc gene sequences from permethrin-sensitive and -tolerant S. scabiei var. canis Gerlach mites, and identified a G to A single nucleotide polymorphism (SNP) in permethrin-tolerant mites resulting in an amino acid change from glycine to aspartic acid in domain III S6. The mutation is in a region of the gene where mutations have been identified in a range of pyrethroid-resistant arthropods. Results of in vitro permethrin exposure assays showed that survival rates for mites bearing the mutation were similar to those previously reported for mites from human subjects where clinical tolerance to permethrin had been observed. A real-time polymerase chain reaction-high-resolution melt (PCR-HRM) assay was developed to detect this SNP. This assay provides a useful methodology for screening for this and other mutations associated with permethrin resistance in scabies mite populations and thus facilitates surveillance for acaricide resistance.  相似文献   

20.
陈斌  鲜鹏杰  乔梁  周勇 《昆虫学报》2015,58(10):1116-1125
昆虫电压门控钠离子通道(voltage-gated sodium channel)存在于所有可兴奋细胞的细胞膜上,在动作电位的产生和传导上起重要作用,是有机氯和拟除虫菊酯杀虫剂的靶标位点。在农业和医学害虫控制过程中,由于有机氯和拟除虫菊酯杀虫剂的广泛使用,抗药性问题日益突出。其中,由于钠离子通道基因突变,降低了钠离子通道对有机氯和拟除虫菊酯类杀虫剂的亲和性,从而产生击倒抗性(knock-down resistance, kdr),已成为抗性产生的重要机制之一。本文综述了昆虫钠离子通道的跨膜拓扑结构、功能、进化及其基因的克隆;更重要的是总结了已报道的40多种昆虫40个钠离子通道基因非同义突变,以及钠离子通道基因选择性mRNA剪接和编辑,以及它们与杀虫剂抗性的关系;也评述了钠离子通道基因突变引起蛋白质结构的改变,从而对杀虫剂抗性的影响机制。这些研究对于进一步鉴定与杀虫剂抗性相关的突变及抗性机制,开发有机氯和拟除虫菊酯类杀虫剂抗性分子监测方法具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号