首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is involved in versatile functions in plant growth and development as a signaling molecule. To date, plants have been reported to produce NO following exposure to nitrite (N O 2 ? ) the amino acid L-arginine, hydroxylamine, or polyamines. Here we demonstrate azide-dependent NO production in plants. The water fern Azolla pinnata emitted NO into air upon exposure to sodium azide (NaN3). The NO production was dependent on azide concentration and was strongly inhibited by potassium cyanide (KCN). Incubation of A. pinnata with the catalase inhibitor 3-aminotriazole (3-AT) abolished the azide-dependent NO production. Although nitrite-dependent NO production was inhibited by sodium azide, azide-dependent NO production was not affected by nitrite. These results indicate that A. pinnata enzymatically produces NO using azide as a substrate. We suggest that plants are also capable of producing NO from azide by the action of catalase as previously reported in animals.  相似文献   

2.
《Mutation Research Letters》1994,323(1-2):35-39
Methapyrilene (MP) is a rat-liver carcinogen and cocarcinogen that exhibits a narrow spectrum of mutagenic activity in Salmonella typhimurium, inducing only a 2-fold increase in revertants only in the base-substitution strain TA1535; it also enhances the mutagenic activity of sodium azide (NaN3) in the same strain. To examine the effects of MP at the molecular level, we used the colony probe hybridization procedure dveloped by Cebula and Koch (Mutation Res., 229 (1990) 79–87) to identify the base substitutions in ~800 background, MP-, NaN3-, and MP + NaN3-induced revertants of the hisG46 allele of strain Ta1535. The predominant mutation in all 4 mutation spectra was a CCC → CTC transition. the results suggest a mechanism by which MP enhances the infidelity of the DNA replication complex or inhibits a DNA reapir of proofreading function, resulting in the production of more of the same error that occurs normally and that is also induced by NaN3. Such a mechanism might be the basis for the carcinogenic and cocarcinogenic activities of MP. To our knowledge, this is the first report of the molecular analysis of mutants produced by exposure of cells to a binary mixture of mutagens.  相似文献   

3.
Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer.  相似文献   

4.
3-Phosphoglycerate- and oxaloacetate-dependent O2 photoevolution by permeabilized cell preparations (Pressates), prepared from wild type (Wt) and two reductive pentose phosphate cycle mutants of Chlamydomonas reinhardtii showed different sensitivities to the inhibitors sodium cyanide and sodium azide. NaCN (1.5 millimolar) severely inhibits both CO2- and 3-phosphoglycerate-dependent O2 photoevolution by the Wt Pressate, but does not inhibit 3-phosphoglycerate-dependent O2 photoevolution by Pressates prepared from the mutants rcl-u-1-10-6C (which lacks ribulose, 1-5, bisphosphate carboxylase activity) and F60 (which lacks phosphoribulokinase activity). NaN3 (0.5 millimolar) inhibits 3-phosphoglycerate-dependent O2 photoevolution by the rcl-u-1-10-6C Pressate more severely than in the Pressates prepared from F60 and Wt. A higher concentration of NaN3 (2.0 millimolar) severely inhibited oxaloacetate-dependent O2 photoevolution by the rcl-u-1-10-6C, but not by the F60 Pressate. O2 exchange-dependent upon methyl viologen was not strongly inhibited by 2 millimolar NaN3 in either of the mutant Pressates. The data suggests that the mutational lesions which resulted in decreased ribulose-1,5-bisphosphate carboxylase and phosphoribulokinase activities effected changes in other photosynthetic reactions, either by direct interactions between component proteins or by causing changes in substrate or cofactor availability to the partial reactions.  相似文献   

5.
One-pot reaction of cobalt(II) nitrate hexahydrate Co(NO3)2 · 6H2O with H2salpn (N,N′-bis(salicylidene)-1,3-diaminopropane) in presence of a large excess of sodium azide (NaN3) gives the new Co(III) compound {Na[CoIII(μ-salpn)(μ1,1-N3)2]}n (1), which was characterized by single crystal X-ray diffraction analysis. The crystal structure shows polymeric 1D complex generated by the hexadentate Schiff base salpn2− and two crystallographically different azide ligands. The two nitrogen atoms of the salpn ligand are bonded to the cobalt(III) ion while each phenoxo oxygen atom is bonded to the same Co(III) ion and to two equivalent sodium ions. Each azide ligand acts with the end-on bridging coordination mode between Co(III) and Na(I) ions. The Co(III) ion adopts a distorted octahedral geometry arising from two oxygen and two nitrogen atoms of the salpn ligand and from two nitrogen atoms of the two crystallographically different azide ligands in trans positions. Such [Co(salpn)(N3)2] entities are connected each other by sodium ions through four oxygen atoms of two equivalent Schiff base ligands and two nitrogen atom of the two different azide ligands to generate the 1D structure of 1.  相似文献   

6.
The effects of sodium azide (NaN3) in combination with diethyl sulfate (dES) or N-methyl-N′-nitrosourea (MNH) on mutation frequency in barley were studied. It was found that sodium azide produced high frequencies of chlorophyll mutations when used alone and has a synergistic effect on mutation yields following MNH treatments. However, the mutation frequency was decreased whe azide was applied following dES treatment of seeds. The mutagenic efficiency of azide was found to be high, possibly because of low “physiological” damage. The synergistic increase in mutation yields by MNH and azide treatment indicates that azide has unusual promise as a mutagen for both practical and research applications.  相似文献   

7.
The glutamate binding glycoprotein from rat brain synaptic plasma membranes was found to be quite sensitive to inhibition by sodium azide (NaN3. The glutamate binding activity of the purified glycoprotein was decreased to 50% in the presence of 0.33 mM NaN3. Similar concentrations of NaN3 also caused 50% inhibition of glutamate binding to the synaptic membranes. Analysis of the purified binding protein for its content of iron and sulfur revealed the presence of 1.95 g atom Fe and 2.19 g atom S per mole of 14,000 M.W. protein. On the basis of changes in the difference spectra of this protein it is believed that both the azide effect and the glutamate binding are taking place at a site which contains the Fe2S2 center.  相似文献   

8.
Sodium azide (NaN3) is known as an inhibitor of catalase, and a nitric oxide (NO) donor in the presence of catalase and H2O2. We showed here that catalase-catalyzed oxidation of NaN3 can generate reactive nitrogen species which contribute to tyrosine nitration in the presence of H2O2. The formation of free-tyrosine nitration and protein-bound tyrosine nitration by the NaN3/catalase/H2O2 system showed a maximum level at pH 6.0. Free-tyrosine nitration induced by peroxynitrite was inhibited by ethanol and dimethyl-sulfoxide (DMSO), and augmented by superoxide dismutase (SOD). However, free-tyrosine nitration induced by the NaN3/catalase/H2O2 system was not affected by ethanol, DMSO and SOD. NO-2 and NO donating agents did not affect free-tyrosine nitration by the NaN3/catalase/H2O2 system. The reaction of NaN3 with hydroxyl radical generating system showed free-tyrosine nitration, but no formation of nitrite and nitrate. The generation of nitrite (NO-2) and nitrate (NO-3) by the NaN3/catalase/H2O2 system was maximal at pH 5.0. These results suggested that the oxidation of NaN3 by the catalase/H2O2 system generates unknown peroxynitrite-like reactive nitrogen intermediates, which contribute to tyrosine nitration.  相似文献   

9.
Unidirectional Na fluxes from frog''s striated muscle were measured in the presence of 0 to 5 mM sodium azide. With azide concentrations of 2 and 5 mM the Na efflux was markedly stimulated; the Na efflux with 5 mM azide was about 300 per cent greater than normal. A similar increase was present when all but the 5.0 mM sodium added with azide was replaced by choline. 10-5 M strophanthidin abolished the azide effect on Na24 efflux. Concentrations of azide of 1.0 mM or less had no effect on Na efflux. The Na influx, on the other hand, was only increased by 41 per cent in the presence of 5 mM NaN3. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of azide. The hypothesis is advanced that the active transport of Na is controlled by the transmembrane potential and that the stimulation of Na efflux is produced as a consequence of the membrane depolarization caused by the azide.  相似文献   

10.
Crop improvement of Coffea arabica L. (coffee) via mutagenesis could accelerate breeding programs; thus, the present study aimed to develop an in vitro protocol using the chemical mutagens sodium azide (NaN3) and ethyl methanesulfonate (EMS) on embryogenic cell suspensions of Arabica coffee variety Catuaí and, subsequently, to evaluate the responses of the resulting mutagenized tissues to salinity stress. Embryogenic suspension cultures were incubated with 0.0, 2.5, 5.0, or 10.0 mM NaN3 or 0.0, 185.2, 370.5, or 741.0 mM EMS. As the concentration of NaN3 or EMS increased, the survival of embryogenic suspension cultures decreased compared to controls. The median lethal dose (LD50) for NaN3 was 5 mM for 15 min and for EMS it was 185.2 mM for 120 min. Embryogenic suspension cultures treated with NaN3 or EMS were cultured on selective medium supplemented with 0, 50, 100, 150, 250, or 300 mM NaCl showed that 50 mM NaCl could be used as selection pressure. Plantlet growth and total amino acid content were affected by NaCl stress; some mutants had longer shoots and higher amino acid content than controls. Random amplified polymorphic DNA (RAPD) analysis was performed to determine whether the NaN3 or EMS treatments could induce genetic variability and resulted in identifiable polymorphic markers. A total of 18 10-mer primers were used to amplify genomic DNA of putative mutant and non-mutant arabica coffee embryogenic cultures and produced 50 scorable bands, of which 22% were polymorphic.  相似文献   

11.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

12.
S Ichida  T Osugi  H Yoshida 《Life sciences》1981,29(9):963-970
The effects of sodium azide (NaN3), hydroxylamine (NH2OH) and sodium nitroprusside on potassium-stimulated 45Ca uptake (K-stimulated 45Ca uptake) by P2 fraction of Gray and Whittaker from rat brain were investigated. During preincubation with these reagents, the contents of cyclic GMP in synaptosomes increased, reaching maximum levels within 2 min. On preincubation for 2 min, NaN3, an activator of membrane bound guanylate cyclase, inhibited K-stimulated 45Ca uptake, but NH2OH and sodium nitroprusside did not affect it. Sodium cyanide, another metabolic inhibitor, had no effect on K-stimulated 45Ca uptake. There was a correlation between inhibition of K-stimulated 45Ca uptake and increase in the cGMP level on preincubation with NaN3 for various periods. Based on these results role of cGMP in or around the membrane was discussed in relation to the K-stimulated 45Ca uptake by P2 fraction.  相似文献   

13.
14.
Zhu M  Li M  Yang F  Ou X  Ren Q  Gao H  Zhu C  Guo J 《Neurochemistry international》2011,59(6):739-748
It is well established that stimulating delta-opioid receptor (DOR) with its specific agonists elicits neuroprotection against hypoxia/ischemia. Mitochondrial dysfunction plays a key role in hypoxic neuronal injury, but the effects of DOR activation on mitochondrial dysfunction in neurons are poorly elucidated. In this investigation, we studied the effects of [d-Ala2, d-Leu5] enkephalin (DADLE), a potent DOR agonist, on acute mitochondrial dysfunction and ensuing cell damage induced by sodium azide in primary rat cortical neuronal cultures, and explored possible mechanisms underlying. Here, we show that DADLE reverses NaN3-induced acute mitochondrial dysfunction by selectively activating DOR, mainly including mitochondrial membrane depolarization, mitochondrial Ca2+ overload and reactive oxygen species generation. DOR stimulation also inhibits cytochrome c release and caspase-3 activation, and attenuates neuronal death caused by acute NaN3 insults. Furthermore, DOR activation with DADLE protects neurons from acute NaN3 insults mainly through PKC-ERK pathway, and mitochondrial ERK activation is especially required for DOR neuroprotection against acute mitochondrial dysfunction.  相似文献   

15.
BackgroundThe urinary excreted selenium species selenosugar 1 (SeSug1) plays a key role for monitoring of supplemental selenium exposure, e.g. by occupational exposure. In order to reproduce its contents in the long term, the integrity of SeSug1 in the urine is essential. Studies on the stability of SeSug1 in urine samples stored at −20 °C have shown that degradation of SeSug 1 occurs, requiring adequate countermeasures.MethodsHere, we explored the long-term stability of SeSug1 under usual storage conditions at −20 °C. For this purpose, the simultaneous determination of selenosugar 1 and methylselenic acid (MeSeA) was used to explore the stabilizing of the SeSug1 content by applying sodium azide (NaN3) as a bactericide or/and 5 M ammonium acetate buffer for pH control.ResultsIn untreated urine, conversion of SeSug1 to MeSeA was evident within days. Differences in urine matrices clearly showed different impact, which could be attributed to different buffer strengths by the urine itself. For durability, various concentrations of sodium azide were first applied, followed by pH buffering. A combination of 0.1% NaN3 and pH of 5.5 kept the SeSug1 content stable for over 3 months.ConclusionThe formation of MeSeA as degradation product of SeSug1 could be confirmed. Based on the proportions, an oxidation-based decomposition pathway was proposed. The investigations revealed that the complex interaction of pH buffering and bactericidal activity must be taken into account in order to stabilize SeSug1 in the urine. The main effect was the addition of NaN3. However, the alkaline nature of NaN3 required a sufficient buffering of the urinary matrix at a pH of 5.5.  相似文献   

16.
Lateral (L) cilia of freshwater mussel (Margaritana margaritifera and Elliptio complanatus) gills can be arrested in one of two unique positions. When treated with 12.5 mM CaCl2 and 10?5 M A23187 they arrest in a “hands up” position, ie, pointing frontally. When treated with approximately 10 mM vanadate (V) they arrest in a “hands down” position, ie, pointing abfrontally. L-cilia treated with 12.5 mM CaCl2 and 1 mM NaN3 also arrest in a “hands down” position; substitution of 20 mM KC1 and 1 mM NaN3 causes cilia to move rapidly and simultaneously to a “hands up” position. The observations suggest that there are two switching mechanisms for activation of active sliding in ciliary beat one at the end of the recovery stroke and the other at the end of the effective stroke; the first is inhibited by calcium and the second by vanadate or azide. This is consistent with a model of ciliary beating where microtubule doublet numbers 1, 2, 3, and 4 are active during the effective stroke while microtubule doublets numbers 6, 7, 8, and 9 are passive, and the converse occurs during the recovery stroke.  相似文献   

17.
A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (1/1, 500 to 1/40, 000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3.  相似文献   

18.
Sturgeon spermatozoa are unique for their sustained motility. We investigated the relative importance of bioenergetic pathways in the energy supply of Siberian sturgeon Acipenser baerii spermatozoa during motile and immotile states. Spermatozoon motility and oxygen consumption rate (OCR) were analysed following exposure to inhibitors of oxidative phosphorylation (sodium azide, NaN3), glycolysis (2-deoxy-D-glucose, DOG) and β-oxidation of fatty acids (sodium fluoride, NaF), and to an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenyl hydrazine, CCCP). No significant difference in curvilinear velocity was observed after addition of these reagents to activation medium (AM) or nonactivation medium (NAM) for incubation. Incubation of spermatozoa in NAM containing CCCP or NaN3 resulted in significantly decreased motility duration compared to controls. The OCR of sturgeon spermatozoa in AM (11.9 ± 1.4 nmol O2 min−1 (109 spz)−1) was significantly higher than in NAM (8.2 ± 1.5 nmol O2 min−1 (109 spz)−1). The OCR significantly declined with addition of NaN3 to AM and NAM. No significant difference in motility parameters or OCR was observed with NaF or DOG. These results suggest active oxidative phosphorylation in both immotile and motile spermatozoa. Nevertheless, mitochondrial respiration occurring during motility is not sufficient to meet the high energy demands, and the energy required for sustained motility of Siberian sturgeon spermatozoa is derived from adenosine triphosphate accumulated during the quiescent state.  相似文献   

19.
《Plant science》1986,47(2):109-114
Soybean seeds (cv. Bragg) were mutagenized with either ethyl methanesulphonate (EMS), gamma-rays or sodium azide (NaN3). EMS was the most efficient in generating chlorophyll-deficient variants in the M2. NaN3 was not an effective mutagen. Approximately 25 200 M2 plants were screened for absence of nodulation after inoculation with Bradyrhizobium japonicum strain CB1809 (=USDA136). Three stable non-nodulation mutants were recovered and designated nod49, nod772 and nod139. Mutant nod49 was isolated from a mixture of M2 populations and this mutant also failed to nodulate upon inoculation with Rhizobium fredii strain USDA257, which nodulated the parent cultivar. Mutants nod772 and nod139 came from segregating EMS-derived M2 families, indicating that these mutations were a result of mutagenesis. Inheritance of the non-nodulation character has been demonstrated through to the M5, M4 and M3 generations for nod49, nod772 and nod139, respectively.  相似文献   

20.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing 4-amino-2,3,5,6-tetraazabenzo[cd]azulen-7-one nucleosides 5 (BaON) with the aim of developing new base pairing motif is described. The tricyclic nucleoside 5 was prepared starting with the 7-deaza-7-iodopurine derivative 1 via a palladium catalyzed cross-coupling reaction with methyl acrylate, followed by an intramolecular cyclization. The resulting nucleoside was incorporated into ODNs, and the base pairing property of the BaON:NaNO (2-amino-7-hydroxy-1,8-naphthyridine nucleoside) pair in the duplex was evaluated by a thermal denaturation study. The melting temperature (Tm) of the duplex containing the BaON:NaNO pair showed a higher value than that of the duplexes containing the adenine:thymine (A:T) and the guanine:cytosine (G:C) pairs, however it was lower than that of the ImON:NaNO (ImON = 7-amino-imidazo[5′,4′:4,5]pyrido[2,3-d]pyrimidin-4(5H)-one nucleoside) pair. A temperature-dependent 1H NMR study revealed that the H-bonding ability of BaON was lower than that of ImON, which would explain why the BaON:NaNO pair was less thermally stable than the ImON:NaNO pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号