首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Parallel simulations with different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The majority of the water molecules had residence times shorter than 100 ps, but a few water molecules are fixed inside the protein for up to 1.125 ns. The hydrogen-bonded network in cytochrome c oxidase is not uniformly distributed, and the degree of water arrangement is variable. The average number of solvent sites in the proton-conducting K- and D-pathways was determined. In contrast to single water files in narrow geometries we observe significant diffusion of individual water molecules along these pathways. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water molecules, provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the mechanism of proton pumping.  相似文献   

2.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

3.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

4.
The light-driven proton pump bacteriorhodopsin (bR) is a transmembrane protein that uses large conformational changes for proton transfer from the cytoplasmic to the extracellular regions. Crystal structures, due to their solvent conditions, do not resolve the effect of lipid molecules on these protein conformational changes. To begin to understand the molecular details behind such large conformational changes, we simulated two conformations of wild-type bacteriorhodopsin, one of the dark-adapted state and the second of an intermediate (M(O)) state, each within an explicit dimyristoyl-phosphatidylcholine (DMPC) lipid bilayer. The simulations included all-hydrogen and all-atom representations of protein, lipid, and water and were performed for 20 ns. We investigate the equilibrium properties and the dynamic motions of the two conformations in the lipid setting. We note that the conformational state of the M(O) intermediate bR remains markedly different from the dark-adapted bR state in that the M(O) intermediate shows rearrangement of the cytoplasmic portions of helices C, F, and G, and nearby loops. This difference in the states remained throughout the simulations, and the results are stable on the molecular dynamics timescale and provide an illustration of the changes in both lipid and water that help to stabilize a particular state. Our analysis focuses on how the environment adjusts to these two states and on how the dynamics of the helices, loops, and water molecules can be related to the pump mechanism of bacteriorhodopsin. For example, water generally behaves in the same manner on the extracellular sides of both simulations but is decreased in the cytoplasmic region of the M(O) intermediate. We suspect that the different water behavior is closely related to the fluctuations of microcavities volume in the protein interior, which is strongly coupled to the collective motion of the protein. Our simulation result suggests that experimental observation can be useful to verify a decreased number of waters in the cytoplasmic regions of the late-intermediate stages by measuring the rate of water exchange with the interior of the protein.  相似文献   

5.
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.  相似文献   

6.
Song Y  Mao J  Gunner MR 《Biochemistry》2003,42(33):9875-9888
Residue ionization states were calculated in nine crystal structures of bacteriorhodopsin trapped in bR, early M, and late M states by multiconformation continuum electrostatics. This combines continuum electrostatics and molecular mechanics, deriving equilibrium distributions of ionization states and polar residue and water positions. The three central cluster groups [retinal Schiff base (SB), Asp 85 and Asp 212] are ionized in bR structures while a proton has transferred from SB(+) to Asp 85(-) in late M structures matching experimental results. The proton shift in M is due to weaker SB(+)-ionized acid and more favorable SB(0)-ionized acid interactions following retinal isomerization. The proton release cluster (Glu 194 and Glu 204) binds one proton in bR, which is lost to water by pH 8 in late M. In bR the half-ionized state is stabilized by charge-dipole interactions while full ionization is disallowed by charge-charge repulsion between the closely spaced acids. In M the acids move apart, permitting full ionization. Arg 82 movement connects the proton shifts in the central and proton release clusters. Changes in total charge of the two clusters are coupled by direct long-range interactions. Separate calculations consider continuum or explicit water in internal cavities. The explicit waters and nearby polar residues can reorient to stabilize different charge distributions. Proton release to the low-pH, extracellular side of the protein occurs in these calculations where residue ionization remains at equilibrium with the medium. Thus, the key changes distinguishing the intermediates are indeed trapped in the structures.  相似文献   

7.
Pomès R  Roux B 《Biophysical journal》2002,82(5):2304-2316
The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it provides a coordination of water molecules well suited both to proton hydration and to high proton mobility, and it facilitates the slower reorientation or turn step of the Grotthuss mechanism by stabilizing intermediate configurations of the hydrogen-bonded network in which water molecules are in the process of flipping between their two preferred, polarized states. This mechanism offers a detailed molecular model for the rapid transport of protons in channels, in energy-transducing membrane proteins, and in enzymes.  相似文献   

8.
A wealth of information has been gathered during the past decades that water molecules do play an important role in the structure, dynamics, and function of bacteriorhodopsin (bR) and purple membrane. Light-induced structural alterations in bR as detected by X-ray and neutron diffraction at low and high resolution are discussed in relationship to the mechanism of proton pumping. The analysis of high resolution intermediate structures revealed photon-induced rearrangements of water molecules and hydrogen bonds concomitant with conformational changes in the chromophore and the protein. These observations led to an understanding of key features of the pumping mechanism, especially the vectoriality and the different modes of proton translocation in the proton release and uptake domain of bR. In addition, water molecules influence the function of bR via equilibrium fluctuations, which must occur with adequate amplitude so that energy barriers between conformational states can be overcome.  相似文献   

9.
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process.  相似文献   

10.
Fischer N  Kandt C 《Proteins》2011,79(10):2871-2885
Powered by proton-motive force, the inner membrane translocase AcrB is the engine of the AcrAB-TolC efflux pump in Escherichia coli. As proton conduction in proteins occurs along hydrogen-bonded networks of polar residues and water molecules, knowledge of the protein-internal water distribution and water-interacting residues allows drawing conclusions to possible pathways of proton conduction. Here, we report a series of 6× 50 ns independent molecular dynamics simulations of asymmetric AcrB embedded in a phospholipid/water environment. Simulating each monomer in its proposed protonation state, we calculated for each trans-membrane domain the average water distribution, identified residues interacting with these waters and quantified each residue's frequency of water hydrogen bond contact. Combining this information we find three possible routes of proton transfer connecting a continuously hydrated region of known key residues in the TMD interior to bulk water by one cytoplasmic and up to three periplasm water channels in monomer B and A. We find that water access of the trans-membrane domains is regulated by four groups of residues in a combination of side chain re-orientations and shifts of trans-membrane helices. Our findings support a proton release event via Arg971 during the C intermediate or in the transition to A, and proton uptake occurring in the A or B state or during a so far unknown intermediate in between B and C where cytoplasmic water access is still possible. Our simulations suggest experimentally testable hypotheses, which have not been investigated so far.  相似文献   

11.
Proteins that bind protons at cell membrane interfaces often expose to the bulk clusters of carboxylate and histidine sidechains that capture protons transiently and, in proton transporters, deliver protons to an internal site. The protonation-coupled dynamics of bulk-exposed carboxylate clusters, also known as proton antennas, is poorly described. An essential open question is how water-mediated bridges between sidechains of the cluster respond to protonation change and facilitate transient proton storage. To address this question, here I studied the protonation-coupled dynamics at the proton-binding antenna of PsbO, a small extrinsinc subunit of the photosystem II complex, with atomistic molecular dynamics simulations and systematic graph-based analyses of dynamic protein and protein-water hydrogen-bond networks. The protonation of specific carboxylate groups is found to impact the dynamics of their local protein-water hydrogen-bond clusters. Regardless of the protonation state considered for PsbO, carboxylate pairs that can sample direct hydrogen bonding, or bridge via short hydrogen-bonded water chains, anchor to nearby basic or polar protein sidechains. As a result, carboxylic sidechains of the hypothesized antenna cluster are part of dynamic hydrogen bond networks that may rearrange rapidly when the protonation changes.  相似文献   

12.
Protonated networks of internal water molecules appear to be involved in proton transfer in various integral membrane proteins. High-resolution x-ray studies of protein crystals at low temperature deliver mean positions of most internal waters, but only limited information about fluctuations within such H-bonded networks formed by water and residues. The question arises as to how water molecules behave inside and on the surface of a fluctuating membrane protein under more physiological conditions. Therefore, as an example, long-time molecular dynamics simulations of bacteriorhodopsin were performed with explicit membrane/water environment. Based on a recent x-ray model the bacteriorhodopsin trimer was inserted in a fully solvated 16 x 16 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-bilayer patch, resulting in a system of approximately 84,000 atoms. Unrestrained molecular dynamics calculations of 5 ns were performed using the GROMACS package and force field. Mean water densities were computed to describe the anisotropic distribution of internal water molecules. In the whole protein two larger areas of higher water density are identified. They are located between the central proton binding site, the Schiff base, and the extracellular proton release site. Separated by Arg-82 these water clusters could provide a proton release pathway in a Grotthus-like mechanism as indicated by a continuum absorbance change observed during the photocycle by time-resolved Fourier transform infrared spectroscopy. Residues are identified which are H-bonded to the water clusters and are therefore facilitating proton conduction. Their influence on proton transfer via the H-bonded network as indicated by the continuum absorbance change is predicted. This may explain why several site-directed mutations alter the proton release kinetics without a direct involvement in proton transfer.  相似文献   

13.
The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH3+ in the single-file region, the protonated species is characterized by a strong hydrogen bond resembling that of O2H5+. The quantum dispersion of protons has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural fluctuations of the protonated single file of waters around an average position and the slow movements of the average position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the pore.  相似文献   

14.
The bleach continuum in the 1900-1800-cm(-1) region was reported during the photocycle of bacteriorhodopsin (bR) and was assigned to the dissociation of a polarizable proton chain during the proton release step. More recently, a broad band pass filter was used and additional infrared continua have been reported: a bleach at >2700 cm(-1), a bleach in the 2500-2150-cm(-1) region, and an absorptive behavior in the 2100-1800-cm(-1) region. To fully understand the importance of the hydrogen-bonded chains in the mechanism of the proton transport in bR, a detailed study is carried out here. Comparisons are made between the time-resolved Fourier transform infrared spectroscopy experiments on wild-type bR and its E204Q mutant (which has no early proton release), and between the changes in the continua observed in thermally or photothermally heated water (using visible light-absorbing dye) and those observed during the photocycle. The results strongly suggest that, except for the weak bleach in the 1900-1800-cm(-1) region and >2500 cm(-1), there are other infrared continua observed during the bR photocycle, which are inseparable from the changes in the absorption of the solvent water molecules that are photothermally excited via the nonradiative relaxation of the photoexcited retinal chromophore. A possible structure of the hydrogen-bonded system, giving rise to the observed bleach in the 1900-1800-cm(-1) region and the role of the polarizable proton in the proton transport is discussed.  相似文献   

15.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

16.
In the photocycle of bacteriorhodopsin (bR), light-induced transfer of a proton from the Schiff base to an acceptor group located in the extracellular half of the protein, followed by reprotonation from the cytoplasmic side, are key steps in vectorial proton pumping. Between the deprotonation and reprotonation events, bR is in the M state. Diverse experiments undertaken to characterize the M state support a model in which the M state is not a static entity, but rather a progression of two or more functional substates. Structural changes occurring in the M state and in the entire photocycle of wild-type bR can be understood in the context of a model which reconciles the chloride ion-pumping phenotype of mutants D85S and D85T with the fact that bR creates a transmembrane proton-motive force.  相似文献   

17.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

18.
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

19.
The molecular mechanism for proton conduction along hydrogen-bonded chains, or "proton wires," is studied with free energy simulations. The complete transport of a charge along a proton wire requires two complementary processes: 1) translocation of an excess proton (propagation of an ionic defect), and 2) reorientation of the hydrogen-bonded chain (propagation of a bonding defect). The potential of mean force profile for these two steps is computed in model systems comprising a single-file chain of nine dissociable and polarizable water molecules represented by the PM6 model of Stillinger and co-workers. Results of molecular dynamics simulations with umbrella sampling indicate that the unprotonated chain is preferably polarized, and that the inversion of its total dipole moment involves an activation free energy of 8 kcal/mol. In contrast, the rapid translocation of an excess H+ across a chain extending between two spherical solvent droplets is an activationless process. These results suggest that the propagation of a bonding defect constitutes a limiting step for the passage of several protons along single-file chains of water molecules, whereas the ionic translocation may be fast enough to occur within the lifetime of transient hydrogen-bonded water chains in biological membranes.  相似文献   

20.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号