首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels.  相似文献   

2.

Background  

In the Drosophila ovary, germ-line and soma cells are interconnected via gap junctions. The main gap-junction proteins in invertebrates are members of the innexin family. In order to reveal the role that innexins play in cell-cell communication during oogenesis, we investigated the localization of innexins 1, 2, 3 and 4 using immunohistochemistry, and analyzed follicle development following channel blockade.  相似文献   

3.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

4.
We recently demonstrated that heteromerization of innexins 2 and 3 from Drosophila melanogaster (Dm) is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins are thought to interact via their C-terminal cytoplasmic domains during the assembly of heteromeric gap junction channels. However, the mechanisms that control heteromeric versus homomeric channel formation are still largely unknown. Here we report the isolation of both non-modified and 2'-fluoro-2'-deoxy-modified RNA anti-innexin 2 aptamers by in vitro selection. The aptamers bind to a proximal epitope on the carboxyl-tail of Dm innexin 2 protein and specifically inhibit the heterologous interaction of innexin 2 and innexin 3 carboxyl-termini in vitro. These domain-specific inhibitors represent the first step towards functional studies focusing on the activity of these domains in vivo.  相似文献   

5.
C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (I j) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The I j deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of I j between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.  相似文献   

6.

Background

Ion-transport mechanisms and gap junctions are known to cooperate in creating bioelectric phenomena, like pH gradients, voltage gradients and ion fluxes within single cells, tissues, organs, and whole organisms. Such phenomena have been shown to play regulatory roles in a variety of developmental and regenerative processes. Using Drosophila oogenesis as a model system, we aim at characterizing in detail the mechanisms underlying bioelectric phenomena in order to reveal their regulatory functions. We, therefore, investigated the stage-specific distribution patterns of V-ATPase components in relation to gap-junction proteins.

Results

We analysed the localization of the V-ATPase components ductin (subunit c) and subunit a, and the gap-junction components innexins 2 and 3, especially in polar cells, border cells, stalk cells and centripetally migrating cells. These types of follicle cells had previously been shown to exhibit characteristic patterns of membrane channels as well as membrane potential and intracellular pH. Stage-specifically, ductin and subunit a were found either colocalized or separately enriched in different regions of soma and germ-line cells. While ductin was often more prominent in plasma membranes, subunit a was more prominent in cytoplasmic and nuclear vesicles. Particularly, ductin was enriched in polar cells, stalk cells, and nurse-cell membranes, whereas subunit a was enriched in the cytoplasm of border cells, columnar follicle cells and germ-line cells. Comparably, ductin and both innexins 2 and 3 were either colocalized or separately enriched in different cellular regions. While ductin often showed a continuous membrane distribution, the distribution of both innexins was mostly punctate. Particularly, ductin was enriched in polar cells and stalk cells, whereas innexin 2 was enriched in the oolemma, and innexin 3 in centripetally migrating follicle cells. In lateral follicle-cell membranes, the three proteins were found colocalized as well as separately concentrated in presumed gap-junction plaques.

Conclusions

Our results support the notion of a large variety of gap junctions existing in the Drosophila ovary. Moreover, since ductin is the channel-forming part of a proton pump and, like the innexins, is able to form junctional as well as non-junctional membrane channels, a plethora of cellular functions could be realized by using these proteins. The distribution and activity patterns of such membrane channels are expected to contribute to developmentally important bioelectric signals.
  相似文献   

7.
8.
Invertebrate gap junctions are composed of proteins called innexins and eight innexin encoding loci have been identified in the now complete genome sequence of Drosophila melanogaster. The intercellular channels formed by these proteins are multimeric and previous studies have shown that, in a heterologous expression system, homo- and hetero-oligomeric channels can form, each combination possessing different gating characteristics. Here we demonstrate that the innexins exhibit complex overlapping expression patterns during oogenesis, embryogenesis, imaginal wing disc development and central nervous system development and show that only certain combinations of innexin oligomerization are possible in vivo. This work forms an essential basis for future studies of innexin interactions in Drosophila and outlines the potential extent of gap-junction involvement in development.  相似文献   

9.
A novel member of the innexin family (cv-inx) has been isolated from the annelid polychaete worm Chaetopterus variopedatus using a PCR approach on genomic DNA and sequence analysis on genomic DNA clones. The gene is present in a HindIII-HindIII segment of 2250 bp containing an uninterrupted open reading frame of 1196 bp encoding a protein of 399 amino acids. The predicted protein shows the typical structural features of innexins and consensus sites for phosphorylation. Analyses on genomic DNA demonstrate that cv-inx is a single copy gene with no introns in the coding region, exactly corresponding to the cDNA sequence. The gene expression is regulated during development as shown by Northern blots analyses of the RNA and by immunoreaction with antibodies against the protein at several embryonic stages. The finding of an innexin in the phylum Annelida, outside of the Ecdysozoa clade, and its peculiar gene structure suggest the necessity to reconsider the current hypothesis on the origin and evolution of gap junctional proteins. Received: 15 December 2000 / Accepted: 27 August 2001  相似文献   

10.
Gap junctions are direct intercellular channels that permit the passage of ions and small signaling molecules. The temporal and spatial regulation of gap junctional communication is, thus, one mechanism by which cell interactions, and hence cell properties and cell fate, may be regulated during development. The nervous system of the leech, Hirudo medicinalis, is a particularly advantageous system in which to study developmental mechanisms involving gap junctions because interactions between identified cells may be studied in vivo in both the embryo and the adult. As in most invertebrates, gap junctions in the leech are composed of innexin proteins, which are distantly related to the vertebrate pannexins and are encoded by a multi-gene family. We have cloned ten novel leech innexins and describe the expression of these, plus two other previously reported members of this gene family, in the leech embryo between embryonic days 6 and 12, a period during which the main features of the central nervous system are established. Four innexins are expressed in neurons and two in glia, while several innexins are expressed in the excretory, circulatory, and reproductive organs. Of particular interest is Hm-inx6, whose expression appears to be restricted to the characterized S cell and two other neurons putatively identified as presynaptic to this cell. Two other innexins also show highly restricted expressions in neurons and may be developmentally regulated. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

11.
Gap junctions are membrane channels that directly connect the cytoplasm of neighboring cells, allowing the exchange of ions and small molecules. Two analogous families of proteins, the connexins and innexins, are the channel-forming molecules in vertebrates and invertebrates, respectively. In order to study the role of gap junctions in the embryonic development of the nervous system, we searched for innexins in the grasshopper Schistocerca americana. Here we present the molecular cloning and sequence analysis of two novel innexins, G-Inx(1) and G-Inx(2), expressed during grasshopper embryonic development. The analysis of G-Inx(1) and G-Inx(2) proteins suggests they bear four transmembrane domains, which show strong conservation in members of the innexin family. The study of the phylogenetic relationships between members of the innexin family and the new grasshopper proteins suggests that G-Inx(1) is orthologous to the Drosophila 1(1)-ogre. However, G-Inx(2) seems to be a member of a new group of insect innexins. We used in situ hybridization with the G-Inx(1) and G-Inx(2) cDNA clones, and two polyclonal sera raised against different regions of G-Inx(1) to study the mRNA and protein expression patterns and the subcellular localization of the grasshopper innexins. G-Inx(1) is primarily expressed in the embryonic nervous system, in neural precursors and glial cells. In addition, a restricted stripe of epithelial cells in the developing limb, involved in the guidance of sensory growth cones, expresses G-Inx(1). G-Inx(2) expression is more widespread in the grasshopper embryo, but a restricted expression is found in a subset of neural precursors. The generally different but partially overlapping expression patterns of G-Inx(1) and G-Inx(2) supports the combinatorial character of gap junction formation in invertebrates, an essential property to generate specificity in this form of cell-cell communication.  相似文献   

12.
Innexins are a family of membrane proteins involved in the formation of gap junctions in invertebrates. They have been found to participate in several aspects of cell differentiation and in embryonic patterning through the formation of specific intercellular communication channels. We present here data showing that the recently identified innexin of the marine worm Chaetopterus variopedatus is expressed only in particular cells of the early stage, demonstrating cell specificity of innexin expression also in polychaete annelids. Phylogenetic analysis of all known innexins results in a phylogenetic tree clearly distinguishing insect, nematode, and other invertebrate innexins. Comparative analysis of proteins and known related genes shows that the apparent similarity of protein composition, overall structural organization, and specificity of cellular expression, typical of innexins of all studied organisms, correspond to highly heterogeneous gene structures even for genes that are in close contiguity on the same chromosome. A possible evolutionary motive producing this situation is discussed.  相似文献   

13.
The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.  相似文献   

14.
Gap junctions formed by two hemichannels from two neighboring cells are cell-to-cell communication channels; hemichannels are communication channels between intracellular and extracellular environments. Hemichannels are hexameric proteins formed by connexins, pannexins, innexins and vinnexins. Innexin-hemichannels (innexons) exist in the lepidopteran cell surface, but their component innexins and functions have not been reported. Recent studies by others have demonstrated that hemichannels, connexons and pannexons from vertebrates serve as regulators of apoptosis via inactivating the PI3K/Akt signaling pathway. Here, the apoptogenic properties of innexons are demonstrated using two innexin cDNAs, Spli-inx2 and Spli-inx3, which were isolated from hemocytes of lepidopteran Spodoptera litura. Alignment analysis revealed that these two genes belong to a conserved innexin family, as they contain the insect signature YYQWV motif at the beginning of the second transmembrane domain. Immunofluorescence showed that two fusion proteins, Inx2-V5 and Inx3-V5, were localized predominantly in the cell membrane, cytoplasm and also nuclei. Ectopic expression in Sf9 cells and over-expression of Inx2 and Inx3 in Spli221 cells promoted apoptosis. In the Spli221 cells, apoptotic cells presented remarkable membrane blebbing. This study also showed that Sf9 and Spli221 cells undergo low level apoptosis under normal culture conditions, but not Hi5 cells. In Hi5 stable cell lines, biotinylation was used to isolate surface proteins and confirm Inx2 and Inx3 localization in the cell membrane and also further data showed that Hi5 cells may activate the PI3K signaling pathway via phosphorylating molecular Akt downstream. This result suggests that innexon-promoted apoptosis may be involving the PI3K/Akt signaling pathway. These findings will facilitate further examinations of the apoptotic regulation by the PI3K/Akt signaling pathway and comparative studies of innexons, connexons, pannexons, and vinnexons.  相似文献   

15.
Neurons and glia of the medicinal leech CNS express different subsets of the 21 innexin genes encoded in its genome. We report here that the punctal distributions of fluorescently tagged innexin transgenes varies in a stereotypical pattern depending on the innexin expressed. Furthermore, whereas certain innexins colocalize extensively (INX1 and INX14), others do not (e.g., INX1 and INX2 or INX6). We then demonstrate that the mutation of a highly conserved proline residue in the second transmembrane domain of innexins creates a gap junction protein with dominant negative properties. Coexpressing the mutated INX1 gene with its wild type blocks the formation of fluorescent puncta and decouples the expressing neuron from its normal gap junction‐coupled network of cells. Similarly, expression of an INX2 mutant transgene (a glial cell innexin), blocks endogenous INX2 puncta and wild‐type transgene puncta, and decouples the glial cell from the other glial cells in the ganglion. We show in cell culture with dye‐uptake and plasma membrane labeling experiments that the mutant innexin transgene is not expressed on the cell membrane but instead appears to accumulate in the cell's perinuclear region. Lastly, we use these mutant innexin transgenes to show that the INX1 mutant transgene blocks not only INX1 puncta formation, but also puncta of INX14, with which INX1 usually colocalizes. By contrast, the formation of INX6 puncta was unaffected by the INX1 mutant. Together, these experiments suggest that leech innexins can selectively interact with one another to form gap junction plaques, which are heterogeneously located in cellular arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 571–586, 2013  相似文献   

16.
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers.  相似文献   

17.
Little is known about how mammalian cells respond to the expression of innexins (Inxs), which are known to mediate cell‐to‐cell communication that causes apoptosis in the cells of the insect Spodoptera litura. The mammalian expression system, p3xFLAG tag protein, containing the CMV promoter, allowed us to construct two C‐terminally elongated innexins (Cte‐Inxs), SpliInx2 (Inx2‐FLAG), and SpliInx3 (Inx3‐FLAG), which were predicted to have the same secondary topological structures as the native SpliInx2 and SpliInx3. Here, we found that only the mRNAs of the two Cte‐Inxs were expressed under the control of the CMV promoter in HeLa cells. Unexpectedly, mRNA expression of the two Cte‐Inxs enhanced apoptosis of HeLa cells. The two Cte‐Inx mRNAs were associated with a significant decrease in Akt phosphorylation in HeLa cells undergoing apoptosis. Furthermore, Inx3‐FLAG mRNA expression in nonapoptotic HCT116 cells was also associated with a significant decrease in the levels of phosphorylated Akt. Intriguingly, expression of the mRNAs of the two Cte‐Inxs did not activate caspase 3, but it markedly reduced Bid levels in HeLa cells undergoing apoptosis. These results suggest that mRNA expression of the two Cte‐Inxs may activate a Bid‐dependent apoptotic pathway in HeLa cells. Our study demonstrates that invertebrate gap junction mRNAs can function in vertebrate cancer cells as tumor suppressors.  相似文献   

18.
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers.  相似文献   

19.
Planaria possess remarkable powers of regeneration. After bisection, one blastema regenerates a head, while the other forms a tail. The ability of previously-adjacent cells to adopt radically different fates could be due to long-range signaling allowing determination of position relative to, and the identity of, remaining tissue. However, this process is not understood at the molecular level. Following the hypothesis that gap-junctional communication (GJC) may underlie this signaling, we cloned and characterized the expression of the Innexin gene family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence and expression. The concordance between expression-based and phylogenetic grouping suggests diversification of 3 ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected throughout the animal, as well as specifically in regeneration blastemas, consistent with a role in long-range signaling relevant to specification of blastema positional identity. Exposure to a GJC-blocking reagent which does not distinguish among gap junctions composed of different Innexin proteins (is not subject to compensation or redundancy) often resulted in bipolar (2-headed) animals. Taken together, the expression data and the respecification of the posterior blastema to an anteriorized fate by GJC loss-of-function suggest that innexin-based GJC mediates instructive signaling during regeneration.  相似文献   

20.
The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号