首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1,1,2,2‐tetrachloroethane‐d2, the 129Xe NMR spectrum of the Xe@cryptophane‐223 complex bearing seven acetate groups (Xe@ 1 complex) shows an unusually broad signal compared with that of its congeners (Chapellet, LL. et al. J. Org. Chem. 2015 ;80:6143–6151). To interpret this unexpected behaviour, a 1H NMR analysis and a thorough study of the chiroptical properties of 1 as a function of the nature of the solvent have been performed. The 1H NMR spectra of 1 reveal that a self‐encapsulation phenomenon takes place in DMSO‐d6 and 1,1,2,2‐tetrachloroethane‐d2 solvents. Thanks to the separation of the two enantiomers of 1 by HPLC on chiral stationary phase, the two enantiomers of 1 have been studied in detail by polarimetry, electronic (ECD), and vibrational (VCD) circular dichroism spectroscopies. Except for ECD spectroscopy, these chiroptical techniques reveal spectroscopic changes as a function of the nature of the solvent. For instance, in DMSO and 1,1,2,2‐tetrachloroethane, in which the self‐encapsulation phenomenon takes place, the sign of the specific optical rotation of [CD(?)254]‐ 1 and [CD(+)254]‐ 1 is changed. These results have then been compared with those obtained with cryptophane‐223 bearing only one acetate group on the propylenedioxy linker (compound 2 ) and with cryptophane‐223 bearing six acetate groups (compound 3 ). A self‐encapsulation phenomenon is also observed with compound 2 . Finally, compounds 2 and 3 show different chiroptical properties compared with those obtained with the two enantiomers of compound 1 .  相似文献   

2.
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine; the structural confirmation was supported by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared spectroscopy, and liquid chromatography-mass spectrometry. Its sensing ability towards Ni2+ ion was examined showing a binding constant of 1.04 × 105 compared with other suitable metal cations (Ca2+, Co2+, Cr3+, Ag+, Pb2+, Fe3+, Mg2+, and K+) using ultraviolet–visible (UV–vis) and fluorescence spectroscopic studies. The minimum concentration of Ni2+ ions and limit of detection was found to be 9.4 μM. A job's plot gave the binding stoichiometry ratio of oxadiazole derivative 2 vs Ni2+ ions as 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with calf thymus DNA was supported by ultraviolet–visible (UV–vis) and fluorescent light, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gave the binding score for oxadiazole derivative 2 as −6.5 kcal/mol, which further confirmed the intercalative interaction. In addition, the antifungal activity of oxadiazole derivative 2 was also screened against several fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion methods. In antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against 2,2-diphenyl-1-picrylhydrazyl and H2O2 free radicals.  相似文献   

3.
An amino acid based and bidentate Schiff base, (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate (ligand), was synthesized from the reaction of glycine-methyl ester hydrochloride with 2-hydroxy-1-naphthaldehyde. Characterization of the ligand was carried out using theoretical quantum–mechanical calculations and experimental spectroscopic methods. The molecular structure of the compound was confirmed using X-ray single-crystal data, NMR, FTIR and UV–Visible spectroscopy, which were in good agreement with the structure predicted by the theoretical calculations using density functional theory (DFT). Antimicrobial activity of the ligand was investigated for its minimum inhibitory concentration (MIC) to several bacteria and yeast cultures. UV–Visible spectroscopy studies also shown that the ligand can bind calf thymus DNA (CT-DNA) electrostatic binding. In addition, DNA cleavage study showed that the ligand cleaved DNA without the need for external agents. Energetically most favorable docked structures were obtained from the rigid molecular docking of the compound with DNA. The compound binds at the active site of the DNA proteins by weak non-covalent interactions. The colorimetric response of the ligand in DMSO to the addition of equivalent amount of anions (F, Br, I, CN, SCN, ClO4, HSO4, AcO, H2PO4, N3 and OH) was investigated and the ligand was shown to be sensitive to CN anion.  相似文献   

4.
The molecules‐in‐molecules (MIM) fragment‐based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM‐VCD and MIM‐ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long‐range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM‐VCD and MIM‐ROA fragment‐based methods to explore the evolution of the chiroptical spectroscopic characteristics of 310‐helix, α‐helix, β‐hairpin, γ‐turn, and β‐extended conformers of gas phase polyalanine (chain length n = 6–14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site‐specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two‐step‐MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α‐(alanine)20 polypeptide obtained using the two‐step‐MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM‐fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides.  相似文献   

5.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   

6.
The nucleotide cyclase CyaC of Sinorhizobium meliloti is a member of class III adenylate cyclases (AC), a diverse group present in all forms of life. CyaC is membrane‐integral by a hexahelical membrane domain (6TM) with the basic topology of mammalian ACs. The 6TM domain of CyaC contains a tetra‐histidine signature that is universally present in the membrane anchors of bacterial diheme‐B succinate‐quinone oxidoreductases. Heterologous expression of cyaC imparted activity for cAMP formation from ATP to Escherichia coli, whereas guanylate cyclase activity was not detectable. Detergent solubilized and purified CyaC was a diheme‐B protein and carried a binuclear iron‐sulfur cluster. Single point mutations in the signature histidine residues caused loss of heme‐B in the membrane and loss of AC activity. Heme‐B of purified CyaC could be oxidized or reduced by ubiquinone analogs (Q0 or Q0H2). The activity of CyaC in bacterial membranes responded to oxidation or reduction by Q0 and O2, or NADH and Q0H2 respectively. We conclude that CyaC‐like membrane anchors of bacterial ACs can serve as the input site for chemical stimuli which are translated by the AC into an intracellular second messenger response.  相似文献   

7.
A series of germanium and silicon incorporated diorganotin derivatives of general formula where R1 = H3C, C6H5, p-CH3C6H4, p-FC6H4; R2 = H2CSi(CH3)2C6H5, H2CC6H5, p-CH3C7H7 were synthesized by the reaction of appropriate diorganotin dichlorides and germatranyl (substituted) propionic acid in 1:2 mole ratio, respectively. The evidence regarding their structure is mainly based on spectroscopic data obtained by multinuclear (1H, 13C, 29Si, 119Sn) NMR and 119mSn Mössbauer, IR and mass spectral studies in combination with melting points and elemental analyses. The compounds have been screened for in vitro anti-leishmanial activity against promastigotes of Leishmania major and the results offer potent activities which are better than the standard drug, pentamidine, for one compound.  相似文献   

8.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as β-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N′-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 FeIII:L complexes were isolated and the crystal structures of Fe(HPPH)Cl2, Fe(4BBPH)Cl2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N′-bis-picolinoyl hydrazine; H2APH=N-4-aminobenzoyl-N′-picolinoyl hydrazine, H23BBPH=N-3-bromobenzoyl-N′-picolinoylhydrazine and H24BBPH=N-(4-bromobenzoyl)-N′-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The FeIII complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N′-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N′-(picolinoyl)-hydrazine), H2PPH, H23BBPH and H24BBPH, showed high efficacy at mobilizing 59Fe from cells and inhibiting 59Fe uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit 59Fe uptake could not be accounted for by direct chelation of 59Fe from 59Fe–Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.  相似文献   

10.
The charged, electroactive bipyridine‐helicene‐ruthenium(III) complex [ 4 ] . +,PF6? has been prepared from 3‐(2‐pyridyl)‐4‐aza[6]helicene and a Ru‐bis‐(β‐diketonato)‐bis‐acetonitrile precursor (β‐diketonato: 2,2,6,6‐tetramethyl‐3,5‐heptanedionato). Its chiroptical properties (electronic circular dichroism and optical rotation) were studied both experimentally and theoretically and suggest the presence of 2 diastereoisomers, namely (P,Δ)‐ and (P,Λ)‐[ 4 ] . +,PF6? (denoted jointly as (P,Δ*)‐[ 4 ] . +,PF6?) and their mirror‐images (M,Λ)‐ and (M,Δ)‐[ 4 ] . +,PF6? ((M,Δ*)‐[ 4 ] . +,PF6?). The electrochemical reduction of (P,Δ*)‐[ 4 ] . +,PF6? to neutral complex (P,Δ*)‐ 4 was performed and revealed strong changes in the UV‐vis and electronic circular dichroism spectra. A reversible redox‐triggered chiroptical switching process was then achieved.  相似文献   

11.
Dirhodium complexes bearing N-substituted chiral amino acid ligands are investigated. These complexes have an unusual twisted paddlewheel structure, showing inherent chirality. We would like to demonstrate that parallel application of chiroptical spectroscopic methods (ECD and VCD) and NMR spectroscopy combined with quantum chemical calculations constitutes a powerful tool to determine the configuration of the complexes unequivocally. Two chiroptical methods are needed to determine the absolute configuration: ECD for the coordinated nitrogen atom and VCD for the rhodium core. A quick to use NMR method is also presented: Upon the coordination of small molecules in the axial position, the relative configuration of both the rhodium core and the nitrogen atom can be determined simultaneously by studying spatial proximities provided by 1D NOE spectra.  相似文献   

12.
The purpose of this study was to elucidate the binding of paeonol to human serum albumin (HSA) through spectroscopic methods. The fluorescence quenching of HSA by paeonol was a result of the formation of the HSA–paeonol complex with low binding affinity (K = 4.45 × 103 M?1 at 298 K). Thermodynamic parameters (ΔG = –2.08 × 104 J·mol?1, ΔS = 77.9 J·mol?1·K?1, ΔH = 2.41 × 103 J·mol?1, kq = 9.67 × 1012 M?1·s?1) revealed that paeonol mainly binds HSA through hydrophobic force following a static quenching mode. The binding distance was estimated to be 1.91 nm by fluorescence resonant energy transfer. The conformation of HSA was changed and aggregates were formed in the presence of paeonol, revealed by synchronous fluorescence, circular dichroism, Fourier transform infrared spectroscopy, three‐dimensional fluorescence spectroscopy, and resonance light scattering results.  相似文献   

13.
The nonfluorescent pyrimidodiazepine in Drosophila melanogaster 6-acetyldihydrohomopterin (H2Ahp) was studied using ultraviolet and infrared spectroscopy. The H2Ahp was unstable in 3% NH4Cl whereas a related pteridine sepiapterin was stable. Since Ni2+ stabilized H2Ahp completely, the structure of the H2Ahp · Ni complex was examined. Among 15 pterins, including sepiapterin, the spectral properties in the presence of Ni2+ reflect the pKa's and the reactive group on the side chain but for H2Ahp the spectral properties are rather different from the pteridines and they indicate that the seven-membered ring seemed to have the predominant influence. The Ni2+ comples of H2Ahp resulted in a shift in the absorption maximum from 383 to 436 nm. The corresponding spectral shift of the pteridines due to Ni2+ was much less. From the infrared spectra of H2Ahp and sepiapterin in the presence and absence of Ni2+, the sites of interaction of Ni2+ with H2Ahp were shown to be the phenolic oxygen and N5 in the ring. In the absence of Ni2+ an internal hydrogen bond in sepiapterin was indicated that may involve the carbonyl oxygen and the secondary alcoholic oxygen on the side chain. Other metal ions were tested (Cd2+, Zn2+) but were not as effective as Ni2+ in stabilizing H2Ahp.  相似文献   

14.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

15.
The antibacterial activity of ZnO nanoparticles has been investigated and presented in this paper. Nanoparticles were prepared via non-hydrolytic solution process using zinc acetate di-hydrate (Zn(CH3COO)2·2H2O) and aniline (C6H5NH2) in 6 h refluxing at ∼65 °C. In the presence of four pathogens such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae, the antibacterial study of zinc oxide nanoparticles were observed. The antibacterial activity of ZnO nanoparticles (ZnO-NPs) were studied by spectroscopic method taking different concentrations (5–45 μg/ml) of ZnO-NPs. Our investigation reveals that the lowest concentration of ZnO-NPs solution inhibiting the growth of microbial strain is found to be 5 μg/ml for K. pneumoniae, whereas for E. coli, S. aureus, and S. typhimurium, it was calculated to be 15 μg/ml. The diameter of each ZnO-NPs lies between “20 and 30 nm” as observed from FESEM and transmission electron microscopy images. The composition of synthesized material was analyzed by the Fourier transform infrared spectroscopy, and it shows the band of ZnO at 441 cm−1. Additionally, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO-NPs was also proposed.  相似文献   

16.
Terbium‐doped gadolinium orthovanadate (GdVO4:Tb3+), orthophosphate monohydrate (GdPO4·H2O:Tb3+) and orthovanadate–phosphate (GdV,PO4:Tb3+) powder phosphors were synthesized using a solution combustion method. X‐Ray diffraction analysis confirmed the formation of crystalline GdVO4, GdPO4·H2O and GdV,PO4. Scanning electron microscopy images showed that the powder was composed of an agglomeration of particles of different shapes, ranging from spherical to oval to wire‐like structures. The chemical elements present were confirmed by energy dispersive spectroscopy, and the stretching mode frequencies were determined by Fourier transform infrared spectroscopy. UV–visible spectroscopy spectra showed a strong absorption band with a maximum at 200 nm assigned to the absorption of VO43? and minor excitation bands assigned to f → f transitions of Tb3+. Four characteristic emission peaks were observed at 491, 546, 588 and 623 nm, and are attributed to 5D47Fj (j = 6, 5, 4 and 3). The photoluminescent prominent green emission peak (5D47F5) was centred at 546 nm. The structure and possible mechanism of light emission from GdV1?xPxO4:% Tb3+ are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
 The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron, generating the phenoxyl-copper(II) species [CuII(L1H)]+·, [Cu(L2H)]+·, [CuII(L1H2)]2+·, and [CuII(L2H2)]2+·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO). Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species. Received: 10 February 1997 / Accepted: 7 April 1997  相似文献   

18.
Thermodynamics of the B to Z transition in poly(dGdC)   总被引:1,自引:0,他引:1  
The thermodynamics of the B to Z transition in poly(dGdC) was examined by differential scanning calorimetry, temperature-dependent absorbance spectroscopy, and CD spectroscopy. In a buffer containing 1 mM Na cacodylate, 1 mM MgCl2, pH 6.3, the B to Z transition is centered at 76.4°C, and is characterized by ΔHcal = 2.02 kcal (mol base pair)?1 and a cooperative unit of 150 base pairs (bp). The tm of this transition is independent of both polynucleotide and Mg2+ concentrations. A second transition, with ΔHcal = 2.90 cal (mol bp)?1, follows the B to Z conversion, the tm of which is dependent upon both the polynucleotide and the Mg2+ concentrations. Turbidity changes are concomitant with the second transition, indicative of DNA aggregation. CD spectra recorded at a temperature above the second transition are similar to those reported for ψ(–)-DNA. Both the B to Z transition and the aggregation reaction are fully and rapidly reversible in calorimetric experiments. The helix to coil transition under these solution conditions is centered at 126°C, and is characterized by ΔHcal = 12.4 kcal (mol bp)?1 and a cooperative unit of 290 bp. In 5 mM MgCl2, a single transition is seen centered at 75.5°C, characterized by ΔHcal = 2.82 kcal (mol bp)?1 and a cooperative unit of 430 bp. This transition is not readily reversible in calorimetric experiments. Changes in turbidity are coincident with the transition, and CD spectra at a temperature just above the transition are characteristic of ψ(–)-DNA. A transition at 124.9°C is seen under these solution conditions, with ΔHcal = 10.0 kcal (mol bp)?1 and which requires a complex three-step reaction mechanism to approximate the experimental excess heat capacity curve. Our results provide a direct measure of the thermodynamics of the B to Z transition, and indicate that Z-DNA is an intermediate in the formation of the ψ-(–) aggregate under these solution conditions.  相似文献   

19.
In this study, the melt quenching approach is used to synthesize a lead borate–strontium-based glass system doped with samarium ions. Modifications in the glass network structure arising from the addition of various concentrations of Sm3+ ions were investigated via Fourier transform infrared (FTIR) spectroscopy. FTIR analysis revealed B–O–B bridges, BO3, and BO4 units are present. UV–vis–NIR spectroscopic measurement was performed to study the optical absorption spectra. Optical constants such as optical bandgap energies, refractive indices, and other related parameters were evaluated. The lifetime fluorescence decay was measured and ranged between 1.04 and 1.88 ns. The photoluminescence spectra in the range 500–750 nm revealed four transitions from the ground state 6G5/2 to the excited states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 and J–O theory was utilized to study these optical transitions for Sm3+ ions. Calculations of the oscillator strengths and J–O intensity parameters were performed and the obtained J–O parameters followed the sequence Ω4 > Ω6 > Ω2. The ratio O/R indicated a high lattice asymmetry around the samarium ions. The values of lifetimes and branching ratios for the fabricated samples emphasized their suitability to be used in laser applications. The current glass samples are good candidates for orange and red emission devices.  相似文献   

20.
《Free radical research》2013,47(6):377-385
Electron spin resonance spectroscopy and the spin trapping technique were used to study the formation of the superoxide radical in pyridine. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a trapping agent. Superoxide radical was generated using chemical (potassium superoxide) and photochemical methods with anthralin, benzanthrone, rose bengal, 1,8-dihydroxyanthraquinone and zinc tetraphenylporphyrine as photoactive pigments. Hyperfine coupling (hf) constants for DMPO/O2- were determined to be aN = 12.36 G, aβH= 9.85G, aγH = 1.34 G. The aN and aβH constants are in good agreement with values calculated from a previously determined relationship between hf constants and solvent acceptor number (Reszka et al., (1992) Free Radical Res. Commun., in press). When concentrated hydrogen peroxide was added to DMPO in pyridine a similar EPR spectrum was observed. It is suggested that in this case the DMPO/'O2H adduct is formed by nucleophilic addition of H2O2 to DMPO to give a hydroxylamine, followed by oxidation to the respective nitroxide. The EPR spectrum observed when tetrapropylammonium hydroxide and H2O2 were added to DMPO in pyridine had hf couplings aN = 13.53 G, aβH = 11.38 G, aγH = 0.79 G and it was assigned to a DMPO/'OH adduct. This assignment was based on similarity of this spectrum to the one produced by UV photolysis of hydrogen peroxide and DMPO in aqueous solution and subsequent transfer to pyridine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号