首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One‐handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix‐sense‐selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main‐chain chirality based on the one‐handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction. Chirality 27:454–458, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Molecular orientation, with respect to donor/acceptor interface and electrodes, plays a critical role in determining the performance of all‐polymer solar cells (all‐PSCs), but is often difficult to rationally control. Here, an effective approach for tuning the molecular crystallinity and orientation of naphthalenediimide‐bithiophene‐based n‐type polymers (P(NDI2HD‐T2)) by controlling their number average molecular weights (Mn) is reported. A series of P(NDI2HD‐T2) polymers with different Mn of 13.6 ( PL ), 22.9 ( PM ), and 49.9 kg mol?1 ( PH ) are prepared by changing the amount of end‐capping agent (2‐bromothiophene) during polymerization. Increasing the Mn values of P(NDI2HD‐T2) polymers leads to a remarkable shift of dominant lamellar crystallite textures from edge‐on ( PL ) to face‐on ( PH ) as well as more than a twofold increase in the crystallinity. For example, the portion of face‐on oriented crystallites is dramatically increased from 21.5% and 46.1%, to 78.6% for PL , PM, and PH polymers. These different packing structures in terms of the molecular orientation greatly affect the charge dissociation efficiency at the donor/acceptor interface and thus the short‐circuit current density of the all‐PSCs. All‐PSCs with PTB7‐Th as electron donor and PH as electron acceptor show the highest efficiency of 6.14%, outperforming those with PM (5.08%) and PL (4.29%).  相似文献   

3.
Coordination of a chiral substrate to (meso‐salen)cobalt(II) nitrate and subsequent oxidation generates a Co(III) complex exhibiting a strong chiroptical readout that is attributed to spontaneous substrate‐to‐ligand chirality imprinting. The characteristic circular dichroism (CD) response of the (salen)cobalt complex can be used for enantiomeric analysis of a variety of chiral substrates based on a simple CD measurement at low concentration and without additional purification steps. This chirality sensing approach has potential for high‐throughput enantiomeric excess (ee) screening applications and minimizes solvent waste production. Chirality 26:379–384, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The side‐chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy‐phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side‐chain segment at the meta‐ instead of the para‐position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high‐performance TQ polymers that do not aggregate in solution. The use of branched meta‐(2‐ethylhexyl)oxy‐phenyl side‐chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta‐alkyloxy‐phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge‐transfer state energy that is observed for bulk‐heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open‐circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short‐circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.  相似文献   

5.
Designing polymers that facilitate exciton dissociation and charge transport is critical for the production of highly efficient all‐polymer solar cells (all‐PSCs). Here, the development of a new class of high‐performance naphthalenediimide (NDI)‐based polymers with large dipole moment change (Δµge) and delocalized lowest unoccupied molecular orbital (LUMO) as electron acceptors for all‐PSCs is reported. A series of NDI‐based copolymers incorporating electron‐withdrawing cyanovinylene groups into the backbone (PNDITCVT‐R) is designed and synthesized with 2‐hexyldecyl (R = HD) and 2‐octyldodecyl (R = OD) side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylene groups. All‐PSCs fabricated from these new NDI‐based polymer acceptors exhibit outstanding power conversion efficiencies (7.4%) and high fill factors (65%), which is attributed to efficient exciton dissociation, well‐balanced charge transport, and suppressed monomolecular recombination. Morphological studies by grazing X‐ray scattering and resonant soft X‐ray scattering measurements show the blend films containing polymer donor and PNDITCVT‐R acceptors to exhibit favorable face‐on orientation and well‐mixed morphology with small domain spacing (30–40 nm).  相似文献   

6.
A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The ( d ‐camphorsulfonic acid)‐ and (HCl)‐PANI‐based electrodes exhibited significantly different electrochemical performances in d ‐ and l ‐Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI‐based electrodes were measured within d ‐ and l ‐Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C+]poly1/[C+]poly2 was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C+]poly1/[C+]poly2 can be increased with increasing concentrations of (1S)‐(+)‐ and (1R)‐(?)‐10‐camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Chirality 25:39‐42, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

7.
One advantage of nonfullerene polymer solar cells (PSCs) is that they can yield high open‐circuit voltage (VOC) despite their relatively low optical bandgaps. To maximize the VOC of PSCs, it is important to fine‐tune the energy level offset between the donor and acceptor materials, but in a way not negatively affecting the morphology of the donor:acceptor (D:A) blends. Here, an effective material design rationale based on a family of D–A1–D–A2 terthiophene (T3) donor polymers is reported, which allows for the effective tuning of energy levels but without any negative impacts on the morphology of the blend. Based on a T3 donor unit combined with difluorobenzothiadiazole (ffBT) and difluorobenzoxadiazole (ffBX) acceptor units, three donor polymers are developed with highly similar morphological properties. This is particularly surprising considering that the corresponding quaterthiophene polymers based on ffBT and ffBX exhibit dramatic differences in their solubility and morphological properties. With the fine‐tuning of energy levels, the T3 polymers yield nonfullerene PSCs with a high efficiency of 9.0% for one case and with a remarkably low energy loss (0.53 V) for another polymer. This work will facilitate the development of efficient nonfullerene PSCs with optimal energy levels and favorable morphology properties.  相似文献   

8.
The present work is devoted to the synthesis, conformational analysis, and stereodynamic study of aza‐β3‐cyclodipeptides. This pseudopeptidic ring shows E/Z hydrazide bond isomerism, eight‐membered ring conformation, and chirotopic nitrogen atoms, all of which are elements that are prone to modulate the ring shape. The (E,E) twist boat conformation observed in the solid state by X‐ray diffraction is also the ground conformation in solution, and emerges as the lowest in energy when using quantum chemical calculations. The relative configuration associated with ring chirality and with the two nitrogen chiral centers is governed by steric crowding and adopts the (P)SNSN/(M)RNRN combination which projects side chains in equatorial position. The nitrogen pyramidal inversion (NPI) at the two chiral centers is correlated with the ring reversal. The process is significantly hindered as was shown by VT‐NMR experiments run in C2D2Cl4, which did not make it possible to determine the barrier to inversion. Finally, these findings make it conceivable to resolve enantiomers of aza‐β3‐cyclodipeptides by modulating the backbone decoration appropriately. Chirality 25:341–349, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
10.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

11.
New lipopolymers were synthesized by conjugating cholic acid (ChA) to polyethylenimines (PEI; 2 and 25 kDa) and a polyallylamine (PAA; 15 kDa) via N‐acylation to develop effective gene delivery systems. The extent of ChA substitution linearly varied with the feed ratio during synthesis, indicating good control over grafting ratio. While ChA did not affect binding to plasmid DNA (pDNA) for higher molecular weight (MW) polymers, ChA substitution to 2 kDa PEI significantly affected the pDNA binding. Toxicity of the 2 kDa PEI was unaffected by ChA substitution, but it was improved for the higher MW polymers. Using immortal 293T cells and primary cord blood‐derived mesenchymal stem cells, low MW (2 kDa) PEI was shown to display much better transfection efficiency as a result of ChA substitution, unlike the higher MW polymers. We conclude that ChA could be a suitable substituent for non‐toxic (low MW) PEIs in order to improve their transfection efficiency. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1337–1341, 2013  相似文献   

12.
Highly crystalline conjugated polymers represent a key material for producing high‐performance thick‐active‐layer polymer solar cells (PSCs). However, despite their potential, a limited number of crystalline polymers are used in PSCs because of the lack of highly coplanar acceptor building blocks and insufficient light absorptivity (α < 105) of most donor (D)–acceptor (A)‐type polymers. This study reports a series of novel 3,7‐di(thiophen‐2‐yl)‐1,5‐naphthyridine‐2,6‐dione (NTDT) acceptor‐based conjugated polymers, PNTDT‐2T, PNTDT‐TT, and PNTDT‐2F2T, synthesized with 2,2′‐bithiophene (2T), thieno[3,2‐b]thiophene (TT), and 3,3′‐difluoro‐2,2′‐bithiophene (2F2T) donor units, respectively. PNTDT‐2F2T exhibits superior polymer crystallinity and a much higher absorption coefficient than those of PNTDT‐2T or PNTDT‐TT because of adequate matching between highly coplanar A (NTDT) and D (2F2T) building blocks. A bulk heterojunction solar cell based on PNTDT‐2F2T exhibits a power conversion efficiency of up to 9.63%, with a high short circuit current of 18.80 mA cm?2 and fill factor of 0.70, when a thick active layer (>200 nm) is used, without postfabrication hot processing. The findings demonstrate that the polymer crystallinity and absorption coefficient can be effectively controlled by selecting appropriate D and A building blocks, and that NTDT is a novel and versatile A building block for highly efficient thick‐active‐layer PSCs.  相似文献   

13.
The polymerization of proteins can create newly active and large bio‐macromolecular assemblies that exhibit unique functionalities depending on the properties of the building block proteins and the protein units in polymers. Herein, the first enzymatic polymerization of horseradish peroxidase (HRP) is reported. Recombinant HRPs fused with a tyrosine‐tag (Y‐tag) through a flexible linker at the N‐ and/or Ctermini are expressed in silkworm, Bombyx mori. Trametes sp. laccase (TL) is used to activate the tyrosine of Y‐tagged HRPs with molecular O2 to form a tyrosyl‐free radical, which initiates the tyrosine coupling reaction between the HRP units. A covalent dityrosine linkage is also formed through a HRP‐catalyzed self‐crosslinking reaction in the presence of H2O2. The addition of H2O2 in the self‐polymerization of Y‐tagged HRPs results in lower activity of the HRP polymers, whereas TL provides site‐selectivity, mild reaction conditions and maintains the activity of the polymeric products. The cocrosslinking of Y‐tagged HRPs and HRP‐protein G (Y‐HRP‐pG) units catalyzed by TL shows a higher signal in enzyme‐linked immunosorbent assay (ELISA) than the genetically pG‐fused HRP, Y‐HRP‐pG, and its polymers. This new enzymatic polymerization of HRP promises to provide highly active and functionalized polymers for biomedical applications and diagnostics probes.  相似文献   

14.
The achiral hydrocarbon tetraphenylethylene crystallizes in enantiomorphous forms (chiral space group: P21) to afford right- and left-handed hemihedral crystals, which can be recognized by solid-state circular dichroism spectroscopic analysis. Chiral organic crystals of tetraphenylethylene mediated enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to give, in conjunction with asymmetric autocatalysis with amplification of chirality, almost enantiomerically pure (S)- and (R)-5-pyrimidyl alkanols whose absolute configurations were controlled efficiently by the crystalline chirality of the tetraphenylethylene substrate. Tetrakis(p-chlorophenyl)ethylene and tetrakis(p-bromophenyl)ethylene also show chirality in the crystalline state, which can also act as a chiral substrate and induce enantioselectivity of diisopropylzinc addition to pyrimidine-5-carbaldehyde in asymmetric autocatalysis to give enantiomerically enriched 5-pyrimidyl alkanols with the absolute configuration correlated with that of the chiral crystals. Highly enantioselective synthesis has been achieved using chiral crystals composed of achiral hydrocarbons, tetraphenylethylenes, as chiral inducers. This chemical system enables significant amplification of the amount of chirality using spontaneously formed chiral crystals of achiral organic compounds as the seed for the chirality of asymmetric autocatalysis.  相似文献   

15.
Rivaroxaban is an oral direct factor Xa (FXa) inhibitor clinically used to prevent and treat thromboembolic disorders. Drug–drug interaction (DDI) exist for rivaroxaban and the inhibitors of CYP3A4/5. This study aims to investigate the inhibition of rivaroxaban and its derivatives with a chiral center towards UDP‐glucuronosyltransferases (UGTs). Chemical synthesis was performed to obtain rivaroxaban derivatives with different chiral centers. UGTs supersomes‐catalyzed 4‐methylumbelliferone (4‐MU) glucuronidation was employed to evaluate the inhibition potential towards various UGT isoforms. A significant influence of rivaroxaban derivatives towards UGT1A3 was observed. Chiral centers produce different effects towards the effect of four pairs of rivaroxaban derivatives towards UGT1A3 activity, with stronger inhibition potential of S1 than R1, but stronger inhibition capability of R2, R3, R4 than S2, S3, and S4. Competitive inhibition of R3 and R4 towards UGT1A3 was demonstrated by Dixon and Lineweaver‐Burk plots. In conclusion, the significant influence of rivaroxaban derivatives towards UGT1A3's activity was demonstrated in the present study. The chirality centers highly affected the inhibition behavior of rivaroxaban derivatives towards UGT1A3. Chirality 27:936–943, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] ( PBDTT‐FTTE ) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} ( P(NDI2OD‐T2) ) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.  相似文献   

17.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

18.
Chiral nanostructures show macroscopic optical activity. Local optical activity and its handedness are not uniform in the nanostructure, and are spatially distributed depending on the shape of the nanostructure. In this study we fabricated curved chain nanostructures made of gold by connecting linearly two or more arc structures in a two‐dimensional plane. Spatial features of local optical activity in the chain structures were evaluated with near‐field circular dichroism (CD) imaging, and analyzed with the aid of classical electromagnetic simulation. The electromagnetic simulation predicted that local optical activity appears at inflection points where arc structures are connected. The handedness of the local optical activity was dependent on the handedness of the local chirality at the inflection point. Chiral chain structures have odd inflection points and the local optical activity distributed symmetrically with respect to structural centers. In contrast, achiral chain structures have even inflection points and showed antisymmetric distribution. In the near‐field CD images of fabricated chain nanostructures, the symmetric and antisymmetric distributions of local CD were observed for chiral and achiral chain structures, respectively, consistent with the simulated results. The handedness of the local optical activity was found to be determined by the handedness of the inflection point, for the fabricated chain structures having two or more inflection points. The local optical activity was thus governed primarily by the local chirality of the inflection points for the gold chain structures. The total effect of all the inflection points in the chain structure is considered to be a predominant factor that determines the macroscopic optical activity. Chirality 28:540–544, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Despite rapid advances in the field of nonfullerene polymer solar cells (NF‐PSCs), successful examples of random polymer‐based NF‐PSCs are limited. In this study, it is demonstrated that random donor polymers based on thieno[2′,3′:5′,6′]pyrido[3,4‐g ]thieno[3,2‐c ]isoquinoline‐5,11(4H ,10H )‐dione (TPTI) containing two simple thiophene (T) and bithiophene (2T) electron‐rich moieties (PTTI‐Tx ) can be promising materials for the fabrication of highly efficient NF‐PSCs. With negligible influence on optical bandgaps and energy levels, the crystalline behavior of PTTI‐Tx polymers was modulated by varying the T:2T ratio in the polymer backbone; this resulted in the formation of different microstructures upon blending with a nonfullerene m ‐ITIC acceptor in NF‐PSCs. In particular, a PTPTI‐T70:m ‐ITIC system enabled favorable small‐scale phase separation with an increased population of face‐on oriented crystallites, thereby boosting the processes of effective exciton dissociation and charge transport in the device. Consequently, the highest power conversion efficiency of 11.02% with an enhanced short‐circuit current density of 17.12 mA cm?2 is achieved for the random polymer‐based NF‐PSCs thus far. These results indicate that random terpolymerization is a simple and practical approach for the optimization of a donor polymer toward highly efficient NF‐PSCs.  相似文献   

20.
The origin of P‐ or M‐chirality of methyl substituted 1,3‐cyclohexadienes are elucidated by time‐dependent density functional theory (TD‐DFT) calculation of 1,3‐cyclohexadiene derivatives and acyclic 1,3‐dienes. The sign‐inversion of the rotatory strength of the lowest excited state between 1,3‐cyclohexadiene and (5R)‐axial‐methyl‐1,3‐cyclohexadiene is caused by the conformation around the (C=)C‐C(‐Me) dihedral angle. The correlation between the sign of the rotatory strength and conformation has been found not only in methyl substituted derivatives but also fluoro substituted compounds. Chirality 27:476–478, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号