首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidation of the correct stereochemistry of the metabolite is essential for the mechanistic study of bioactive compounds. Isoflavan-4-ol has the same chiropical chromophore as THD, the biosynthetic precursor of the potent phytoestrogen S-equol. Interested in the correct absolute configuration of isoflavan-4-ol stereoisomers and to compare the available practical approaches for the absolute configuration determination, complete absolute configuration analysis of isoflavan-4-ol stereoisomers has been carried out with by means of ECD and VCD spectroscopy as well as modified Mosher method. Theoretical TD-DFT computations resulted in a poor simulation of the observed experimental ECD spectra, and thus inconclusive absolute configuration assignments of isoflavan-4-ol stereoisomers were obtained. However, DFT-assisted VCD spectroscopic analyses successfully determined correct absolute configurations, and further confirmed by modified Mosher method.  相似文献   

2.
The absolute configuration of semisynthetic (?)‐3α,6β‐acetoxytropane 1 , prepared from (?)‐6β‐hydroxyhyoscyamine 2 , has been determined using vibrational circular dichroism (VCD) spectroscopy. The vibrational spectra (IR and VCD) were calculated using DFT at the B3LYP/DGDZVP level of theory for the eight more stable conformers which account for 99.97% of the total relative abundance in the first 10 kcal/mol range. The calculated VCD spectra of all considered conformations showed two distinctive spectral ranges, one between 1300 and 1200 cm?1, and the other one in the 1150–950 cm?1 region. When compared with the experimental VCD spectrum, the first spectral region confirmed the calculated conformational preferences, whereas the second region showed little change with conformation, thus allowing the determination of the absolute configuration of 1 as (3S,6S)‐3α,6β‐diacetoxytropane. Also, the bands in the second region showed similarities between 1 and 2 in both the experimental and calculated VCD spectra, suggesting that these bands are mainly related to the absolute configuration of the rigid tropane ring system, since they show conformational independency, no variations with the nature of the substituent, and are composed by closely related vibrational modes. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The absolute configurations of three synthesized anthracycline analogues have been determined using vibrational circular dichroism (VCD) spectroscopy and the density functional theory (DFT) calculations. The experimental VCD spectra of the three compounds have been measured for the first time in the film state, prepared from their CDCl3 solutions. Conformational searches for the monomers and some dimers of the three compounds have been performed at the DFT level using the B3LYP functional and the 6‐311G** and 6‐311++G** basis sets. The corresponding vibrational absorption and VCD spectra have been calculated. The good agreement between the experimental and the calculated spectra allows one to assign the absolute configurations of the three compounds with high confidence. In addition, the dominant conformers of the three compounds have also been identified. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The reliability of vibrational circular dichroism (VCD) spectroscopy to discriminate four diastereomeric cedranol acetates 1 , 2 , 3 , 4 by means of their absolute configuration is examined. The usage of CompareVOA software to quantify comparisons of the measured infrared (IR) and VCD spectra with the corresponding simulated spectra at the B3LYP/DGDZVP and B3PW91/DGDZVP levels of theory for each diastereomer enabled the B3PW91 functional to be qualified as superior to the B3LYP functional for vibrational calculations of 1 , 2 , 3 , 4 . Analogously, a set of quantitative VCD spectra cross‐comparisons of 1 , 2 , 3 , 4 unambiguously distinguished the diastereomers using B3PW91 and failed using B3LYP. Remarkably, quantitative IR spectra cross‐comparisons of 1 , 2 , 3 , 4 using B3PW91 or B3LYP functionals demonstrated that the achiral spectroscopic IR technique is not able to distinguish cedranol acetate diastereomers. VCD comparisons using anisotropy g‐factor values of bands in the 1550–950 cm‐1 region of the spectra were of aid to facilitate visual spectra matching for each diastereomer. Chirality 25:939‐951, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Chiral α‐methylbenzyl amine is a well known and often used chiral auxiliary, e.g., in the resolution of racemates or asymmetric catalysis. In this work, α‐methylbenzyl amine and its derivatives N,α‐dimethylbenzyl amine, N,N,α‐trimethylbenzyl amine, and bis[α‐methylbenzyl] amine were investigated by vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT). For all compounds, stable low energy conformers were obtained by the DFT calculations and based on those, the theoretical vibrational absorption (VA) and VCD spectra were calculated and compared with experimental spectra. Hence, the absolute configurations and conformational preferences were determined. A qualitative comparison of all the experimental VCD spectra of the investigated chiral molecules supported by the calculated ones is given which clearly shows similarities between the spectra of the different chiral amines. These can be assigned to vibrations of the unchanged chiral center. Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Experimental and calculated (B3LYP/6‐31G(d)) vibrational circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent DFT optimizations (B3LYP/6‐31G(d)) provides a structure for the lowest energy conformer which agrees well with the structure determined by X‐ray diffraction. In addition, a conformer at an energy of 7 kJ mol?1 (B3LYP/6‐311+G(2d,2p)) with respect to the lowest energy conformer is predicted, displaying different intramolecular hydrogen bonding. Differences between measured and calculated IR and VCD spectra for GB at certain wavenumbers are rationalized in terms of interactions with solvent, intermolecular GB‐GB interactions, and the potential presence of more than one conformer. This is the first detailed investigation of the spectroscopic fingerprint region (850?1300 cm?1) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
A series of representative optically active derivatives of 4‐hydroxy‐5‐alkylcyclopent‐2‐en‐1‐one were prepared from the respective 2‐furyl methyl carbinols via the Piancatelli rearrangement followed by the enzymatic kinetic resolution of racemates. Applicability of chiroptical methods (experimental and calculated electronic circular dichroism [ECD] and vibrational circular dichroism [VCD] spectra) to determine the absolute configuration of both stereogenic centers in 4‐hydroxy‐5‐methylcyclopent‐2‐en‐1‐one was demonstrated. It was also demonstrated that the concurrent application of ECD and VCD spectroscopy can be used for the determination of the configuration of two stereogenic centers. Chirality 26:300–306, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
In the present work, we report a comprehensive vibrational circular dichroism (VCD) spectroscopic study of a chiral crown ether which features an axial chiral 3.3'‐diphenyl‐1,1'‐binaphthyl group as chiral moiety. By comparing the experimental and calculated VCD spectra, we show that the presumably very flexible crown ether preferably adopts only one ring conformation. Conformational flexibility is observed in the 2,4‐dinitrophenyl‐diazophenol group, which was previously introduced for colorimetric detection of primary amines and amino alcohols (Cho et al., Chirality 2011;23:349–353). The VCD spectra of the host–guest complexes with phenyl glycinol (PG) and phenyl alaninol have been studied as well. Based on the spectra calculated, it is shown that the diastereomeric complexes in general can be differentiated using VCD spectroscopy. Furthermore, the experimental VCD spectra of the complexes of the host molecule with PG support the above finding. Chirality 25:294–300, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
《Chirality》2017,29(8):409-414
The absolute configuration (AC) of the common precursor of the fusicoccane family of terpenoids, fusicocca‐2,10(14)‐diene (FCdiene), had only been deduced by a lengthy total synthesis, or indirectly from crystal structures of fusicoccin A. However, in particular the AC determinations based on downstream products of the terpene synthase intrinsically overlook potential epimerization reactions. In this contribution, we confirm the relative stereochemistry of FCdiene by comparison of experimental and predicted 13C–NMR chemical shifts, and finally determine the absolute configuration from an analysis of its infrared and vibrational circular dichroism spectra.  相似文献   

10.
A series of lanthanide tris(β‐diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β‐diketonates). The VCD signals observed around 1500 cm?1 (β‐diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high‐coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. Chirality 26:293–299, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The optical spectroscopic characterization of γ‐turns in solution is uncertain and their distinction from β‐turns is often difficult. This work reports systematic ECD and vibrational circular dichroism (VCD) spectroscopic studies on γ‐turn model cyclic tetrapeptides cyclo(Ala‐β‐Ala‐Pro‐β‐Ala) ( 1 ), cyclo(Pro‐β‐Ala‐Pro‐β‐Ala) ( 2 ) and cyclo(Ala‐β‐Ala‐Ala‐β‐Ala) ( 3 ). Conformational analysis performed at the 6‐31G(d)/B3LYP level of theory using an adequate PCM solvent model predicted one predominant conformer for 1‐3 , featuring two inverse γ‐turns. The ECD spectra in ACN of 1 and 2 are characterized by a negative n→π* band near 230 nm and a positive π→π* band below 200 nm with a long wavelength shoulder. The ECD spectra in TFE of 1‐3 show similar spectra with blue‐shifted bands. The VCD spectra in ACN‐d3 of 1 and 2 show a +/?/+/? amide I sign pattern resulting from four uncoupled vibrations in the case of 1 and a sequence of two positive couplets in the case of 2 . A ?/+/+/? amide I VCD pattern was measured for 3 in TFE‐d2. All three peptides give a positive couplet or couplet‐like feature (+/?) in the amide II region. VCD spectroscopy, in agreement with theoretical calculations revealed that low frequency amide I vibrations (at ~1630 cm?1 or below) are indicative of a C7 H‐bonded inverse γ‐turns with Pro in position 2, while γ‐turns encompassing Ala absorb at higher frequency (above 1645 cm?1). Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
《Chirality》2017,29(11):716-725
The absolute configuration (AC) of the naturally occurring ocimenes (−)‐(3S ,5Z )‐2,6‐dimethyl‐2,3‐epoxyocta‐5,7‐diene ( 1 ) and (−)‐(3S ,5Z )‐2,6‐dimethylocta‐5,7‐dien‐2,3‐diol ( 2 ), isolated from the essential oils of domesticated specimens of Artemisia absinthium , followed by vibrational circular dichroism (VCD) studies of 1 , as well as from the acetonide 3 and the monoacetate 4 , both derived from 2 , since secondary alcohols are not the best functional groups to be present during VCD studies in solution due to intermolecular associations. The AC follows from comparison of experimental and calculated VCD spectra that were obtained by Density Functional Theory computation at the B3LYP/DGDZVP level of theory. Careful nuclear magnetic resonance (NMR) measurements were compared with literature values, providing for the first time systematic 1H and 13C chemical shift data. Regarding homonuclear 1H coupling constants, after performing a few irradiation experiments that showed the presence of several small long‐range interactions, the complete set of coupling constants for 3 , which is representative of the four studied molecules, was determined by iterations using the PERCH software. This procedure even allowed assigning the pro R and pro S methyl group signals of the two gem ‐dimethyl groups present in 3 .  相似文献   

13.
The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans‐2‐aminocyclohexane carboxylic acid (Achc) or trans‐2‐aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three‐dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6‐31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR‐based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Three norclerodane diterpenoids, diosbulbins K-M, and one analogous enolglycoside, diosbulbinoside G, together with four norclerodane diterpenoids, diosbulbins B, E, F and G, were isolated from rhizomes of Dioscorea bulbifera. Their structures were established by spectroscopic and chemical methods, including 1H and 13C NMR, NOESY, HSQC, HMBC, and HRMS analyses. The relative configurations of diosbulbins K and L, and diosbulbin F were confirmed by X-ray crystallographic diffraction analysis, and the absolute stereochemistry of diosbulbin K was determined by a modified Mosher’s method. The 13C NMR spectroscopic data for diosbulbins E, F and G were also measured for the first time. The compounds did not show significant cytotoxic and anti-bacterial activities.  相似文献   

15.
One pair of new C‐8–C‐3′/C‐7–O–C‐4′ linked neolignan enantiomers ( 1a / 1b ) and one new guaiane sesquiterpene ( 2 ) first featuring the 1(2),9(10)‐conjugated double bond were isolated from the stems of Solanum erianthum (Solanceae). Their structures were characterized on the basis of extensive spectroscopic analyses, especially from their 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations of 1a / 1b were rigorously elucidated by electronic circular dichroism (ECD) experiments combined with the reversed helicity rule for the 2,3‐dihydrobenzo[b]furan chromophore, and compound 2 is the first report on the sterochemical assignment of a guaiane sesquiterpene by using the allylic axial chirality rule for the conjugated diene chromophore in combination with the calculated ECD spectrum. Chirality 28:259–263, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Freedman TB  Cao X  Dukor RK  Nafie LA 《Chirality》2003,15(9):743-758
Advances in the measurement, calculation, and application of vibrational circular dichroism (VCD) for the determination of absolute configuration are described. The purpose of the review is to provide an up-to-date perspective on the capability of VCD to solve problems of absolute stereochemistry for chiral molecules primarily in the solution state. The scope of the article covers the experimental methods needed for the accurate measurement of VCD spectra and the theoretical steps required to systematically deduce absolute configuration. Determination of absolute configuration of a molecule by VCD requires knowledge of its conformation or conformational distribution, and hence VCD analysis necessarily provides solution-state conformation information, in many cases available by no other method, as an additional benefit. Comparisons of the advantages and limitations of VCD relative to other available chiroptical methods of analysis are also presented.  相似文献   

17.
Reaction of (S)- or (R)-3-aminoquinuclidine with 2-chloropyrimidine or 2-bromopyrimidine led to an unexpected formation of both cis- and trans-octahydropyrrolo [2,3]pyridine derivatives. A single-step synthesis of two of the four stereoisomers of these octahydropyrrolo[2,3]pyridine derivatives provides a convenient way of generating stereochemically defined isomers. Optimization of reaction conditions was carried out by (1)H NMR monitoring. The relative and absolute stereochemistry of all four stereoisomers was determined by a combination of (1)H, (13)C, and (15)N NMR spectroscopy and vibrational circular dichroism spectroscopy.  相似文献   

18.
Two diastereoisomeric pairs of bis‐oxazolines, provided with a stereogenic center at carbon 4 and based on the 3,3′‐bithiophene atropisomeric scaffold, were synthesized and structurally characterized. They differ in the substituents at positions 2 and 5 of the thiophene rings, which are functionalized with methyl (1) or phenyl (2) groups, respectively. In vibrational circular dichroism (VCD) spectra, recorded in CCl4 solutions, it is possible to distinctly recognize the characteristic features of axial and central stereogenic elements. In tandem with Density Functional Theory (DFT) calculations, the absolute configuration (AC) of the diastereoisomers was safely established. In this case, VCD was shown to be superior to ECD (electronic circular dichroism) in the assignment of AC. The normal modes, evaluated from DFT calculations, show that the VCD signals in correspondence with the stereogenic axis of the bithiophene unit are different for 1 and 2. The VCD spectra of a molecular analog of 1, the (S)‐2,2′,5,5′‐tetramethyl‐4,4′‐bis‐(diphenylphosphino)‐3,3′‐bithiophene oxide (3), characterized by the same 3,3′‐bithiophene scaffold, but devoid of stereogenic centers, exhibits signals similar to those observed in the case of diastereoisomer (aS,R,R)‐1a, associated with almost identical normal modes. Chirality 28:686–695, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Vibrational circular dichroism spectra (VCD) in the mid‐IR region and electronic circular dichroism (ECD) spectra for three carnitine derivatives in the form of hydrochloride salts were recorded in deuterated methanol solutions. Density Functional Theory calculations help one to understand the significance of the observed VCD bands. VCD and ECD spectra are informative about the absolute configuration of the molecule, but VCD data reveal also some conformational aspects in the N,N,N‐trimethyl moiety and inform us about intermolecular interactions gained from the carbonyl stretching region for the acyl substituted carnitines. Chirality 27:907–913, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Dirhodium complexes bearing N-substituted chiral amino acid ligands are investigated. These complexes have an unusual twisted paddlewheel structure, showing inherent chirality. We would like to demonstrate that parallel application of chiroptical spectroscopic methods (ECD and VCD) and NMR spectroscopy combined with quantum chemical calculations constitutes a powerful tool to determine the configuration of the complexes unequivocally. Two chiroptical methods are needed to determine the absolute configuration: ECD for the coordinated nitrogen atom and VCD for the rhodium core. A quick to use NMR method is also presented: Upon the coordination of small molecules in the axial position, the relative configuration of both the rhodium core and the nitrogen atom can be determined simultaneously by studying spatial proximities provided by 1D NOE spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号