首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mutations in the presenilin genes PS1 and PS2 cause early-onset Alzheimer's disease by altering gamma-secretase cleavage of the amyloid precursor protein, the last step in the generation of Abeta peptide. Ablation of presenilin (PS) genes, or mutation of two critical aspartates, abolishes gamma-secretase cleavage, suggesting that PS may be the gamma-secretases. Independently, inhibition experiments indicate that gamma-secretase is an aspartyl protease. To characterize the putative gamma-secretase activity associated with presenilins, lysates from human neuroblastoma SH-SY5Y and human brain homogenates were incubated with biotin derivatives of pepstatin, followed by immunoprecipitation of PS and associated proteins, and biotin detection by Western blotting. Precipitation with PS1 antibodies, directed to either N-terminal or loop regions, yielded the same 43 kDa band, of apparent molecular mass consistent with that of full-length PS1, although it may represent an aspartyl protease complexed with PS1. Incubation of cell lysates with pepstatin-biotin, followed by streptavidin precipitation and PS1 Western blotting, revealed PS1 fragments and full-length protein, indicating that pepstatin-biotin bound to both cleaved and uncleaved PS1. Binding could be competed by gamma-secretase inhibitor L-685,458 and could not be achieved with a PS1 mutant lacking the two transmembrane aspartates. Pepstatin-biotin was also shown to bind to PS2. PS1 was specifically absorbed to pepstatin-agarose, with an optimal pH of 6. Binding of pepstatin-biotin to PS1 from lymphocytes of a heterozygous carrier of pathologic exon 9 deletion was markedly decreased as compared to control lymphocytes, suggesting that this PS1 mutation altered the pepstatin binding site.  相似文献   

2.
Gamma-secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1 and, Pen-2 that is responsible for the intramembrane proteolysis of various type I transmembrane proteins, including amyloid beta-precursor protein and Notch. The direct labeling of PS polypeptides by transition-state analogue gamma-secretase inhibitors suggested that PS represents the catalytic center of gamma-secretase. Here we show that one of the major gamma-secretase inhibitors of dipeptidic type, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), targets the C-terminal fragment of PS, especially the transmembrane domain 7 or more C-terminal region, by designing and synthesizing DAP-BpB (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine-4-(4-(8-biotinamido)octylamino)benzoyl)benzyl)methylamide), a photoactivable DAPT derivative. We also found that DAP-BpB selectively binds to the high molecular weight gamma-secretase complex in an activity-dependent manner. Photolabeling of PS by DAP-BpB is completely blocked by DAPT or its structural relatives (e.g. Compound E) as well as by arylsulfonamides. In contrast, transition-state analogue inhibitor L-685,458 or alpha-helical peptidic inhibitor attenuated the photolabeling of PS1 only at higher concentrations. These data illustrate the DAPT binding site as a novel functional domain within the PS C-terminal fragment that is distinct from the catalytic site or the substrate binding site.  相似文献   

3.
gamma-Secretase is a key enzyme involved in the processing of the beta-amyloid precursor protein into amyloid beta-peptides (Abeta). Abeta accumulates and forms plaques in Alzheimer's disease (AD) brains. A progressive neurodegeneration and cognitive decline occurs during the course of the disease, and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed to staurosporine (STS). We report that the known components (presenilin, Nicastrin, Aph-1 and Pen-2) interact and form active gamma-secretase complexes in apoptotic cells. In addition, the fragments corresponding to the PS1 N-terminal fragment and the caspase-cleaved PS1 C-terminal fragment (PS1-caspCTF) were found to form active gamma-secretase complexes when co-expressed in presenilin (PS) knockout cells. Interestingly, PS1-caspCTF replaced the normal PS1 C-terminal fragment and was co-immunoprecipitated with the gamma-secretase complex in SH-SY5Y cells exposed to STS. In addition, Abeta was detected in medium from apoptotic HEK APP(swe) cells. Together, the data show that gamma-secretase complexes containing PS1-caspCTF are active, and suggest that this proteolytic activity is also important in dying cells and may affect the progression of AD.  相似文献   

4.
Presenilin 1 (PS1) plays an essential role in intramembranous "gamma-secretase" processing of several type I membrane proteins, including the beta-amyloid precursor proteins (APP) and Notch1. In this report, we examine the activity of two familial Alzheimer's disease-linked PS1 variants on the production of secreted Abeta peptides and the effects of L-685,458, a potent gamma-secretase inhibitor, on inhibition of Abeta peptides from cells expressing these PS1 variants. We now report that PS1 variants enhance the production and secretion of both Abeta1-42 and Abeta1-40 peptides. More surprisingly, whereas the IC(50) for inhibition of Abeta1-40 peptide production from cells expressing wild-type PS1 is approximately 1.5 microm, cells expressing the PS1deltaE9 mutant PS1 exhibit an IC(50) of approximately 4 microm. Immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry reveal that the levels of Abeta1-43 peptides are elevated in medium of PS1deltaE9 cells treated with higher concentrations of inhibitor. The differential effects of wild-type and mutant PS1 on gamma-secretase production of Abeta peptides and the disparity in sensitivity of these peptides to a potent gamma-secretase suggest that PS may be necessary, but not sufficient, to catalyze hydrolysis at the scissile bonds that generate the termini of Abeta1-40 and Abeta1-42 peptides.  相似文献   

5.
The gamma-secretase complex, a membrane-bound aspartyl protease, hydrolyzes the transmembrane domains of several integral membrane proteins including the key signaling molecules amyloid precursor protein (APP), Notch, deleted in colorectal cancer (DCC), and N- and E-cadherins. The proteolysis processing of these proteins is critical for generation of signaling molecules that may participate in neuronal communication and plasticity. Using a potent gamma-secretase inhibitor, L-685,458, we examined if blockade of its activity in the hippocampus can influence contextual and spatial memory in rats. Surprisingly, we observed that post-training blockade of gamma-secretase activity leads to enhanced long-term memory in two hippocampus-dependent tasks. This suggests that a signaling molecule(s) generated by gamma-secretase activity may have a negative influence on long-term memory formation.  相似文献   

6.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

7.
Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.  相似文献   

8.
9.
Processing of the Alzheimer amyloid precursor protein (APP) into the amyloid beta-protein and the APP intracellular domain is a proteolysis event mediated by the gamma-secretase complex where presenilin (PS) proteins are key constituents. PS is subjected to an endoproteolytic cleavage, generating a stable heterodimer composed of an N-terminal and a C-terminal fragment. Here we aimed at further understanding the role of PS in endoproteolysis, in proteolytic processing of APP and Notch, and in assembly of the gamma-secretase complex. By using a truncation protocol and alanine scanning, we identified Tyr-288 in the PS1 N-terminal fragment as critical for PS-dependent intramembrane proteolysis. Further mutagenesis of the 288 site identified mutants differentially affecting endoproteolysis and gamma-secretase activity. The Y288F mutant was endoproteolyzed to the same extent as wild type PS but increased the amyloid beta-protein 42/40 ratio by approximately 75%. In contrast, the Y288N mutant was also endoproteolytically processed but was inactive in reconstituting gamma-secretase in PS null cells. The Y288D mutant was deficient in both endoproteolysis and gamma-secretase activity. All three mutant PS1 molecules were incorporated into gamma-secretase complexes and stabilized Pen-2 in PS null cells. Thus, mutations at Tyr-288 do not affect gamma-secretase complex assembly but can differentially control endoproteolysis and gamma-secretase activity.  相似文献   

10.
Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling, we studied the effect of two other FAD PS1 mutants (M146V and L250S) and two dominant negative PS1 mutants (D257A and D385N) on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular calcium concentrations ([Ca2+]i) in SH-SY5Y neuroblastoma cells. We found a significant increase in basal PI hydrolysis in PS1 M146V cells but not in PS1 L250S cells. Both PS1 M146V and PS1 L250S cells showed a significant increase in carbachol-induced [Ca2+]i as compared with nontransfected or wild type PS1 transfected cells. The elevated carbachol-induced [Ca2+]i signals were reversed by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated carbachol-stimulated PI hydrolysis and [Ca2+]i responses. In nontransfected or PS1 wild type transfected cells, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester and pepstatin A also attenuated both carbachol-stimulated PI hydrolysis and [Ca2+]i responses to levels found in PS1 D257A or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent.  相似文献   

11.
Progressive cerebral amyloid beta-protein (A beta) deposition is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). Elevated levels of A beta(42) peptide formation have been linked to early-onset familial AD-causing gene mutations in the amyloid beta-protein precursor (A beta PP) and the presenilins. Sequential cleavage of A beta PP by the beta- and gamma-secretases generates the N- and C-termini of the A beta peptide, making both the beta- and gamma-secretase enzymes potential therapeutic targets for AD. The identity of the A beta PP gamma-secretase and the mechanism by which the C-termini of A beta are formed remain uncertain, although it has been suggested that the presenilins themselves are novel intramembrane-cleaving gamma-secretases of the aspartyl protease class [Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe, D. J. (1999) Nature 398, 513-517]. In this study we report the identification of L-685,458 as a structurally novel inhibitor of A beta PP gamma-secretase activity, with a similar potency for inhibition of A beta(42) and A beta(40) peptides. This compound contains an hydroxyethylene dipeptide isostere which suggests that it could function as a transition state analogue mimic of an aspartyl protease. The preferred stereochemistry of the hydroxyethylene dipeptide isostere was found to be the opposite to that required for inhibition of the HIV-1 aspartyl protease, a factor which may contribute to the observed specificity of this compound. Specific and potent inhibitors of A beta PP gamma-secretase activity such as L-685,458 will enable important advances toward the identification and elucidation of the mechanism of action of this enigmatic protease.  相似文献   

12.
Presenilins (PS) are thought to contain the active site for presenilinase endoproteolysis of PS and gamma-secretase cleavage of substrates. The structural requirements for PS incorporation into the gamma-secretase enzyme complex, complex stability and maturation, and appropriate presenilinase and gamma-secretase activity are poorly understood. We used rescue assays to identify sequences in transmembrane domain one (TM1) of PS1 required to support presenilinase and gamma-secretase activities. Swap mutations identified an N-terminal TM1 domain that is important for gamma-secretase activity only and a C-terminal TM1 domain that is essential for both presenilinase and gamma-secretase activities. Exchange of residues 95-98 of PS1 (sw95-98) completely abolishes both activities while the familial Alzheimer's disease mutation V96F significantly inhibits both activities. Reversion of residue 96 back to valine in the sw95-98 mutant rescues PS function, identifying V96 as the critical residue in this region. The TM1 mutants do not bind to an aspartyl protease transition state analog gamma-secretase inhibitor, indicating a conformational change induced by the mutations that abrogates catalytic activity. TM1 mutant PS1 molecules retain the ability to interact with gamma-secretase substrates and gamma-secretase complex members, although Nicastrin stability is decreased by the presence of these mutants. gamma-Secretase complexes that contain V96F mutant PS1 molecules display a partial loss of function for gamma-secretase that alters the ratio of amyloid-beta peptide species produced, leading to the amyloid-beta peptide aggregation that causes familial Alzheimer's disease.  相似文献   

13.
The gamma-secretase complex, consisting of presenilins (PS), nicastrin (NCT), APH-1, and PEN-2, catalyzes the intramembranous proteolysis of truncated beta-amyloid precursor protein (APP) and Notch derivatives to generate the APP intracellular domain (AICD) and Notch intracellular domain (NICD), respectively. To examine the intracellular sites in which active gamma-secretase resides, we expressed NCT variants harboring either an endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-Golgi network (TGN) targeting motif (NCT-TGN) along with PS1, APH-1, and PEN-2 and examined gamma-secretase activity in these settings. In cells expressing NCT-ER and the other components, PS1 fragments hyperaccumulated, but AICD levels were not elevated. On the other hand, upon coexpression of an ER-retained APP variant or a constitutionally active Notch mutant, NDeltaE, we observed enhanced production of AICD or NICD, respectively, in cells expressing NCT-ER. Moreover, we show that membranes from cells expressing NCT-ER, NCT-TGN, or NCT-WT contain identical levels of PS1 derivatives that can be photoaffinity cross-linked to a biotinylated, benzophenone-derivatized gamma-secretase inhibitor. Finally, our cell-free gamma-secretase assays revealed nearly equivalent gamma-secretase activities in cells expressing PS1, APH-1, PEN-2, and either NCT-WT or NCT-ER. Taken together, we interpret these findings as suggesting that active gamma-secretase complex is generated in the early compartments of the secretory pathway but that these complexes are transported to late compartments in which substrates are encountered and subsequently processed within respective transmembrane segments.  相似文献   

14.
Proteolytic processing of the transmembrane domain of the amyloid precursor protein (APP) is a key component of Alzheimer's disease pathogenesis. Using C-terminally tagged APP derivatives, we have identified by amino-terminal sequencing a novel cleavage site of APP, at Leu-49, distal to the gamma-secretase site. This was termed -cleavage. Brefeldin A treatment and pulse-chase experiments indicate that this cleavage occurs late in the secretory pathway. The level of -cleavage is decreased by expression of presenilin-1 mutants known to impair Abeta formation, and it is sensitive to the gamma-secretase inhibitors MDL28170 and L-685,458. Remarkably, it shares similarities with site 3 cleavage of Notch-1: membrane topology, cleavage before a valine, dependence on presenilins, and inhibition profile.  相似文献   

15.
The presenilin (PS) complex, including PS, nicastrin, APH-1 and PEN-2, is essential for gamma-secretase activity, which is required for amyloid beta-protein (Abeta) generation. However, the precise individual roles of the three cofactors in the PS complex in Abeta generation remain to be clarified. Here, to distinguish the roles of PS cofactors in gamma-secretase activity from those in PS endoproteolysis, we investigated their roles in the gamma-secretase activity reconstituted by the coexpression of PS N- and C-terminal fragments (NTF and CTF) in PS-null cells. We demonstrate that the coexpression of PS1 NTF and CTF forms the heterodimer and restores Abeta generation in PS-null cells. The generation of Abeta was saturable at a certain expression level of PS1 NTF/CTF, while the overexpression of PEN-2 alone resulted in a further increase in Abeta generation. Although PEN-2 did not enhance PS1 NTF/CTF heterodimer formation, PEN-2 expression reduced the IC50 of a specific gamma-secretase inhibitor, a transition state analogue, for Abeta generation, suggesting that PEN-2 expression enhances the affinity or the accessibility of the substrate to the catalytic site. Thus, our results strongly suggest that PEN-2 is not only an essential component of the gamma-secretase complex but also an enhancer of gamma-cleavage after PS heterodimer formation.  相似文献   

16.
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.  相似文献   

17.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

18.
Mitochondria are central in the regulation of cell death. Apart from providing the cell with ATP, mitochondria also harbor several death factors that are released upon apoptotic stimuli. Alterations in mitochondrial functions, increased oxidative stress, and neurons dying by apoptosis have been detected in Alzheimer's disease patients. These findings suggest that mitochondria may trigger the abnormal onset of neuronal cell death in Alzheimer's disease. We previously reported that presenilin 1 (PS1), which is often mutated in familial forms of Alzheimer's disease, is located in mitochondria and hypothesized that presenilin mutations may sensitize cells to apoptotic stimuli at the mitochondrial level. Presenilin forms an active gamma-secretase complex together with Nicastrin (NCT), APH-1, and PEN-2, which among other substrates cleaves the beta-amyloid precursor protein (beta-APP) generating the amyloid beta-peptide and the beta-APP intracellular domain. Here we have identified dual targeting sequences (for endoplasmic reticulum and mitochondria) in NCT and showed expression of NCT in mitochondria by immunoelectron microscopy. We also showed that NCT together with APH-1, PEN-2, and PS1 form a high molecular weight complex located in mitochondria. gamma-secretase activity in isolated mitochondria was demonstrated using C83 (alpha-secretase-cleaved C-terminal 83-residue beta-APP fragment from BD8 cells lacking presenilin and thus gamma-secretase activity) or recombinant C100-Flag (C-terminal 100-residue beta-APP fragment) as substrates. Both systems generated an APP intracellular domain, and the activity was inhibited by the gamma-secretase inhibitors l-685,458 or Compound E. This novel localization of NCT, PS1, APH-1, and PEN-2 expands the role and importance of gamma-secretase activity to mitochondria.  相似文献   

19.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and the Notch receptor. Recently, the low density receptor-related protein (LRP) has been shown to be cleaved by a gamma-secretase-like activity. We postulated that LRP may interact with PS1 and tested its role as a competitive substrate for gamma-secretase. In this report we show that LRP colocalizes and interacts with endogenous PS1 using coimmunoprecipitation and fluorescence lifetime imaging microscopy. In addition, we found that gamma-secretase active site inhibitors do not disrupt the interaction between LRP and PS1, suggesting that the substrate associates with a gamma-secretase docking site located in close proximity to PS1. This is analogous to APP-gamma-secretase interactions. Finally, we show that LRP competes with APP for gamma-secretase activity. Overexpression of a truncated LRP construct consisting of the C terminus, the transmembrane domain, and a short extracellular portion leads to a reduction in the levels of the Abeta40, Abeta42, and p3 peptides without changing the total level of APP expression. In addition, transfection with the beta-chain of LRP causes an increase in uncleaved APP C-terminal fragments and a concomitant decrease in the signaling effects of the APP intracellular domain. In conclusion, LRP is a PS1 interactor and can compete with APP for gamma-secretase enzymatic activity.  相似文献   

20.
We studied effects of the familial Alzheimer's disease presenilin 1 (PS1) exon 9 deletion (PS1-DeltaE9) mutation on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular Ca(2+) concentrations ([Ca(2+)](i)) in human SH-SY5Y neuroblastoma cells. We demonstrate that PS1-DeltaE9 cells have an enhanced basal PI hydrolysis and [Ca(2+)](i) as compared with both wild type PS1 (PS1-WT) and nontransfected (NT) cells. Both were reversed by the phospholipase C (PLC) inhibitor neomycin. The PS1-DeltaE9-related high basal [Ca(2+)](i) was also reversed by xestospongin C confirming that this effect was inositol trisphosphate receptor-mediated. Carbachol gave a greater stimulation of [Ca(2+)](i) in PS1-DeltaE9 cells that took longer to return to basal as compared with responses seen in NT and PS1-WT cells. This long tail-off effect seen in PS1-DeltaE9 cells after carbachol stimulation was reversed by xestospongin C and dantrolene, suggesting that it was mediated by inositol trisphosphate receptor and ryanodine receptor amplification of Ca(2+). Ruthenium red only reduced carbachol peak elevations of [Ca(2+)](i) in NT and PS1-WT cells and not in PS1-DeltaE9 cells. No significant between cell type differences were seen for basal and carbachol-stimulated [Ca(2+)](i) with either ryanodine or the endoplasmic reticulum Ca(2+) ATPase inhibitor cyclopiazonic acid. Immunostaining experiments revealed that for all the cell types PS1 is present at the plasma membrane and co-localizes with N-cadherin, a component of the cell-cell adhesion complex. Immunoblotting of cell extracts for PLC-beta1 showed that, compared with NT and PS1-WT cells, the PS1-DeltaE9 transfectants gave a relative increase in levels of the calpain generated N-terminal fragment (100 kDa) over full-length (150 kDa) PLC-beta1. Our results suggest that the PS1-DeltaE9 mutation causes upstream changes in PI signaling with enhanced basal PLC activity as a primary effect that leads to a higher [Ca(2+)](i). This may provide a novel mechanism by which the PS1-DeltaE9 mutation sensitizes cells to apoptotic stimuli and enhanced amyloid beta generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号