共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Borejdo J Shepard A Dumka D Akopova I Talent J Malka A Burghardt TP 《Biophysical journal》2004,86(4):2308-2317
It is well documented that muscle contraction results from cyclic rotations of actin-bound myosin cross-bridges. The role of actin is hypothesized to be limited to accelerating phosphate release from myosin and to serving as a rigid substrate for cross-bridge rotations. To test this hypothesis, we have measured actin rotations during contraction of a skeletal muscle. Actin filaments of rabbit psoas fiber were labeled with rhodamine-phalloidin. Muscle contraction was induced by a pulse of ATP photogenerated from caged precursor. ATP induced a single turnover of cross-bridges. The rotations were measured by anisotropy of fluorescence originating from a small volume defined by a narrow aperture of a confocal microscope. The anisotropy of phalloidin-actin changed rapidly at first and was followed by a slow relaxation to a steady-state value. The kinetics of orientation changes of actin and myosin were the same. Extracting myosin abolished anisotropy changes. To test whether the rotation of actin was imposed by cross-bridges or whether it reflected hydrolytic activity of actin itself, we labeled actin with fluorescent ADP. The time-course of anisotropy change of fluorescent nucleotide was similar to that of phalloidin-actin. These results suggest that orientation changes of actin are caused by dissociation and rebinding of myosin cross-bridges, and that during contraction, nucleotide does not dissociate from actin. 相似文献
4.
5.
6.
7.
To describe the dependence of arterial pressure on the speed of spreading of pulse wave, an curvilinear regression equation with two constants was proposed. The causes of the discrepancy in the dependences reported in literature are discussed. 相似文献
8.
9.
Changes of thick filament structure during contraction of frog striated muscle. 总被引:3,自引:3,他引:3 下载免费PDF全文
The strongest myosin-related features in the low-angle axial x-ray diffraction pattern of resting frog sartorius muscle are the meridional reflections corresponding to axial spacings of 21.4 and 14.3 nm, and the first layer line, at a spacing 42.9 nm. During tetanus the intensities of the first layer line and the 21.4-nm meridional decrease by 62 and 80% respectively, but, when the muscle is fresh, the 14.3-nm meridional intensity rises by 13%, although it shows a decrease when the muscle is fatigued. The large change in the intensity of the 21.4-nm meridional reflection suggests that the projected myosin cross-bridge density onto the thick filament axis changes during contraction. The model proposed by Bennett (Ph.D. Thesis, University of London, 1977) in which successive cross-bridge levels are at 0,3/8, and 5/8 of the 42.9-nm axial repeat in the resting muscle, passing to 0, 1/3, and 2/3 in the contracting state, can explain why the 21.4-nm reflection decreases in intensity while the 14.3-nm increases when the muscle is activated. The model predicts a rather larger increase of the 14.3-nm reflection intensity during contraction than that observed, but the discrepancy may be removed if a small change of shape or tilt of the cross-bridges relative to the thick filament axis is introduced. The decrease of the intensity of the first layer line indicates that the cross-bridges become disordered in the plane perpendicular to the filament axis. 相似文献
10.
Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction. 总被引:1,自引:2,他引:1 下载免费PDF全文
Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction. 相似文献
11.
Sivelestat sodium hydrate (sivelestat) is a novel synthetic drug and specific inhibitor of neutrophil elastase that has been
approved in Japan as a treatment for acute lung injury associated with systemic inflammatory response syndrome. It is important
to determine how sivelestat affects hemodynamics and the regulatory mechanisms of vascular smooth muscle (VSM). We recently
found that sivelestat relaxes porcine coronary artery VSM via selective inhibition of Ca2+ sensitization induced by a receptor agonist without affecting the normal Ca2+-induced contraction. Although sivelestat relaxes porcine artery, its effects on human artery are unknown; therefore, the
purpose of the present study was to assess the effects of sivelestat on human artery. In the present study, sivelestat induced
concentration-dependent (1 × 10−6 to 3 × 10−4 M) vasorelaxation in U46619 (1 nM) and sphingosylphosphorylcholine (SPC) (30 mM)-precontracted human gastric artery with
or without endothelium, but sivelestat did not induce vasorelaxation in conditions of high K+ (40 mM) depolarization. Sivelestat inhibited VSM contraction by an agonist and SPC, and it did not affect Ca2+-induced normal physiologic contraction. 相似文献
12.
J. C. Jouanin J. F. Kahn R. Grucza H. Monod 《European journal of applied physiology and occupational physiology》1993,67(3):208-212
Nine men [24.6 (SEM 1.1) years] carried out isometric contractions (IC) of the right elbow flexors at 50% and 100% of the maximal voluntary contraction (MVC). At 50% MVC they had to maintain IC until the limit time (isotonic IC: IIC50 and beyond for as long as possible (anisotonic IC: AIC50). At 100% MVC, IC was anisotonic since the decrease in force was immediate (AIC100). Measurements of the force, the integrated electromyogram (iEMG) and the heart rate (f
c) were made during the entire period of contraction. There was a linear relationship between the iEMG increase and thef
c increase for IIC50 and AIC100. This relationship was not found for AIC50. The role played by the peripheral information would seem to have become more important inf
c regulation when the isotonic IC preceding the anisotonic IC was sufficiently long (submaximal IIC). It would seem that the idea of muscle exhaustion at the limit time was only relative, and depended greatly on the subject's motivation and his capacity to endure a certain degree of pain. 相似文献
13.
14.
Accurate arterial stiffness measurement would improve diagnosis and monitoring for many diseases. Atherosclerotic plaques and aneurysms are expected to involve focal changes in vessel wall properties; therefore, a method to image the stiffness variation would be a valuable clinical tool. The pulse wave inverse problem (PWIP) fits unknown parameters from a computational model of arterial pulse wave propagation to ultrasound-based measurements of vessel wall displacements by minimizing the difference between the model and measured displacements. The PWIP has been validated in phantoms, and this study presents the first in vivo demonstration. The common carotid arteries of five healthy volunteers were imaged five times in a single session with repositioning of the probe and subject between each scan. The 1D finite difference computational model used in the PWIP spanned from the start of the transducer to the carotid bifurcation, where a resistance outlet boundary condition was applied to approximately model the downstream reflection of the pulse wave. Unknown parameters that were estimated by the PWIP included a 10-segment linear piecewise compliance distribution and 16 discrete cosine transformation coefficients for each of the inlet boundary conditions. Input data was selected to include pulse waves resulting from the primary pulse and dicrotic notch. The recovered compliance maps indicate that the compliance increases close to the bifurcation, and the variability of the average pulse wave velocity estimated through the PWIP is on the order of 11%, which is similar to that of the conventional processing technique which tracks the wavefront arrival time (13%). 相似文献
15.
Rabben SI Stergiopulos N Hellevik LR Smiseth OA Slørdahl S Urheim S Angelsen B 《Journal of biomechanics》2004,37(10):1615-1622
In this paper, we present a method for estimating local pulse wave velocity (PWV) solely from ultrasound measurements: the area-flow (QA) method. With the QA method, PWV is estimated as the ratio between change in flow and change in cross-sectional area (PWV = dQ/dA) during the reflection-free period of the cardiac cycle. In four anaesthetized dogs and 21 human subjects (age 23-74) we measured the carotid flow and cross-sectional area non-invasively by ultrasound. As a reference method we used the Bramwell-Hill (BH) equation which estimates PWV from pulse pressure and cross-sectional area. Additionally, we therefore measured brachial pulse pressure by oscillometry in the human subjects, and central aortic pulse pressure by micro-manometry in the dogs. As predicted by the pressure dependency of arterial stiffness, the estimated PWV decreased when the aortic pressure was lowered in two of the dogs. For the human subjects, the QA and BH estimates were correlated (R=0.43, p<0.05) and agreed on average (mean difference of -0.14 m/s). The PWV by the BH method increased with age (p<0.01) whereas the PWV by the QA method tended to increase with age (p<0.1). This corresponded to a larger residual variance (residual = deviation of the estimated PWV from the regression line) for the QA method than for the BH method, indicating different precisions for the two methods. This study illustrates that the simple equation PWV = dQ/dA gives estimates correlated to the PWV of the reference method. However, improvements in the basic measurements seem necessary to increase the precision of the method. 相似文献
16.
17.
S Le Bozec P Rougier 《European journal of applied physiology and occupational physiology》1991,63(3-4):293-299
A comparison of the mean power frequency (MPF) and the root mean square amplitude (rms) of the myo-electric signal of two agonist muscles [triceps brachii (fast; TB) and anconeus (slow; ANC)] has been made during repeated intermittent static contractions. Subjects were asked to maintain different extension torques at 50% of maximal voluntary contraction until this could no longer be maintained (endurance time). The interval between successive contractions was kept constant at 3 min. During the first six successive contractions, a decrease in MPF and an increase in rms were most pronounced, ANC and TB MPF recovered with subsequent overshoot. A marked decline in endurance time was also seen. The increase in rms was greater for TB than for ANC when the decrease in MPF was greater for ANC than for TB. The differences in power spectrum density function upper frequencies of the two muscles could explain the greater decrease of MPF in ANC. Our data would suggest a greater fatigability in TB relative to ANC. On and after the seventh contraction, a steady-state in duration, muscle temperature, MPF and rms was reached. These results suggested that a slow (ANC) and a fast (TB) muscle acted in a similar way during intermittent static contractions, when the intervening rest was not long enough to allow full recovery of the muscles. 相似文献
18.
19.