首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The immunopotentiating activity of neisserial porins, the major outer membrane protein of the pathogenic Neisseria, is mediated by its ability to stimulate B cells and up-regulate the surface expression of B7-2. This ability is dependent on MyD88 and Toll-like receptor (TLR)2 expression, as demonstrated by a lack of a response by B cells from MyD88 or TLR2 knockout mice to the porins. Using previously described TLR2-dependent reporter constructs, these results were confirmed and were shown to be due to induction of NF-kappaB nuclear translocation. This is the first demonstration of known vaccine adjuvant to stimulate immune cells via TLR2.  相似文献   

2.
Toll-like receptor (TLR) 2 has recently been associated with cellular responses to numerous microbial products, including LPS and bacterial lipoproteins. However, many preparations of LPS contain low concentrations of highly bioactive contaminants described previously as "endotoxin protein," suggesting that these contaminants could be responsible for the TLR2-mediated signaling observed upon LPS stimulation. To test this hypothesis, commercial preparations of LPS were subjected to a modified phenol re-extraction protocol to eliminate endotoxin protein. While it did not influence the ability to stimulate cells from wild-type mice, repurification eliminated the ability of LPS to activate cells from C3H/HeJ (Lpsd) mice. Additionally, only cell lines transfected with human TLR4, but not human or murine TLR2, acquired responsiveness to both re-extracted LPS and to a protein-free, synthetic preparation of lipid A. These results suggest that neither human nor murine TLR2 plays a role in LPS signaling in the absence of contaminating endotoxin protein.  相似文献   

3.
4.
The human MD-2 molecule is associated with the extracellular domain of human Toll-like receptor 4 (TLR4) and greatly enhances its LPS signaling. The human TLR4-MD-2 complex thus signals the presence of LPS. Little is known, however, about cell surface expression and LPS signaling of the TLR4-MD-2 complex in vivo. We cloned mouse MD-2 molecularly and established a unique mAb MTS510, which reacted selectively with mouse TLR4-MD-2 but not with TLR4 alone in flow cytometry. Mouse MD-2 expression in TLR4-expressing cells enhanced LPS-induced NF-kappaB activation, which was clearly inhibited by MTS510. Thioglycolate-elicited peritoneal macrophages expressed TLR4-MD-2, which was rapidly down-regulated in the presence of LPS. Moreover, LPS-induced TNF-alpha production by peritoneal macrophages was inhibited by MTS510. Collectively, the TLR4-MD-2 complex is expressed on macrophages in vivo and senses and signals the presence of LPS.  相似文献   

5.
Th2 cells are recruited to the lung where they mediate the asthma phenotype. Since the molecular mechanisms regulating Th2 cell trafficking remain unknown, we sought to determine whether trafficking of Th2 cells into the lung is mediated by G alpha i-coupled chemoattractant receptors. We show here that in contrast to untreated Th2 cells, pertussis toxin-treated Th2 cells were unable to traffic into the lung, airways, or lymph nodes following Ag challenge and therefore were unable to induce allergic inflammation in vivo. Pertussis toxin-treated Th2 cells were functional cells, however, and when directly instilled into the airways of mice, bypassing their need to traffic to the lung, were able to induce airway eosinophilic inflammation. These studies conclusively demonstrate that trafficking of Th2 cells into the lung is an active process dependent on chemoattractant receptors.  相似文献   

6.
A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory activities of these molecules.  相似文献   

7.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and CD8(+) T cells. Rae-1beta expression stimulated NK cell cytotoxicity and IFN-gamma secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-gamma, was critical for the rejection of Rae-1beta-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.  相似文献   

8.
Toll-like receptors (TLRs) are key mediators of the innate immune response to microbial pathogens. We investigated the role of TLRs in the recognition of Mycobacterium leprae and the significance of TLR2Arg(677)Trp, a recently discovered human polymorphism that is associated with lepromatous leprosy. In mice, TNF-alpha production in response to M. leprae was essentially absent in TLR2-deficient macrophages. Similarly, human TLR2 mediated M. leprae-dependent activation of NF-kappaB in transfected Chinese hamster ovary and human embryonic kidney 293 cells, with enhancement of this signaling in the presence of CD14. In contrast, activation of NF-kappaB by human TLR2Arg(677)Trp was abolished in response to M. leprae and Mycobacterium tuberculosis. The impaired function of this TLR2 variant provides a molecular mechanism for the poor cellular immune response associated with lepromatous leprosy and may have important implications for understanding the pathogenesis of other mycobacterial infections.  相似文献   

9.
CD1 molecules can present microbial lipid Ag to T cells, suggesting that they participate in host defense against pathogens. In this study, we examined the role of CD1d in resistance to infection with the Lyme disease spirochete, Borrelia burgdorferi (Bb), an organism with proinflammatory lipid Ag. Bb infection of CD1d-deficient (CD1d(-/-)) mouse strains normally resistant to this pathogen resulted in arthritis. Pathology correlated with an increased prevalence of spirochete DNA in tissues and enhanced production of Bb-specific IgG, including IgG to Ag rapidly down-modulated on spirochetes in vivo. CD1d(-/-) mice exhibited high-titer Bb-specific IgG2a, an isotype commonly induced in disease-susceptible mice but not in the disease-resistant control mice in this study. These results show that CD1d deficiency impairs host resistance to a spirochete pathogen, and are the first example of a mutation that imparts Bb-resistant mice with the Ab and disease profile of a susceptible mouse strain.  相似文献   

10.
11.
Host-derived proteases are crucial for the successful infection of vertebrates by several pathogens, including the Lyme disease spirochete bacterium, Borrelia burgdorferi. B. burgdorferi must traverse tissue barriers in the tick vector during transmission to the host and during dissemination within the host, and it must disrupt immune challenges to successfully complete its infectious cycle. It has been proposed that B. burgdorferi can accomplish these tasks without an endogenous extra-cytoplasmic protease by commandeering plasminogen, the highly abundant precursor of the vertebrate protease plasmin. However, the molecular mechanism by which B. burgdorferi immobilizes plasminogen to its surface remains obscure. The data presented here demonstrate that the outer surface protein C (OspC) of B. burgdorferi is a potent plasminogen receptor on the outer membrane of the bacterium. OspC-expressing spirochetes readily bind plasminogen, whereas only background levels of plasminogen are detectable on OspC-deficient strains. Furthermore, plasminogen binding by OspC-expressing spirochetes can be significantly reduced using anti-OspC antibodies. Co-immunofluorescence staining assays demonstrate that wild-type bacteria immobilize plasminogen only if they are actively expressing OspC regardless of the expression of other surface proteins. The co-localization of plasminogen and OspC on OspC-expressing spirochetes further implicates OspC as a biologically relevant plasminogen receptor on the surface of live B. burgdorferi.  相似文献   

12.
Toll-like receptor (TLR) 2 and TLR4 have been implicated in the responses of cells to LPS (endotoxin). CD14-transfected Chinese hamster ovary (CHO)-K1 fibroblasts (CHO/CD14) are exquisitely sensitive to endotoxin. Sequence analysis of CHO-TLR2, compared with human and mouse TLR2, revealed a single base pair deletion. This frameshift mutation resulted in an alternative stop codon, encoding a protein devoid of transmembrane and intracellular domains. CHO-TLR2 cDNA failed to enable LPS signaling upon transient transfection into human epithelial kidney 293 cells. Site-directed mutagenesis of CHO-TLR2 enabled expression of a presumed full-length hamster TLR2 that conferred LPS responsiveness in human epithelial kidney 293 cells. Genomic TLR2 DNA from primary hamster macrophages also contained the frameshift mutation found in CHO fibroblasts. Nevertheless, hamster peritoneal macrophages were found to respond normally to LPS, as evidenced by the induction of cytokines. These results imply that expression of TLR2 is sufficient but not essential for mammalian responses to endotoxin.  相似文献   

13.
To explore the mechanism(s) by which phospholipase C (PLC)-gamma 2 participates in B cell Ag receptor (BCR) signaling, we have studied the function of PLC-gamma 2 mutants in B cells deficient in PLC-gamma 2. Mutation of the N-terminal Src homology 2 domain [SH2(N)] resulted in the complete loss of inositol 1,4, 5-trisphosphate generation upon BCR engagement. A possible explanation for the SH2(N) requirement was provided by findings that this mutation abrogates the association of PLC-gamma 2 with an adaptor protein BLNK. Moreover, expression of a membrane-associated form (CD16/PLC-gamma 2) with SH2(N) mutation required coligation of BCR and CD16 for inositol 1,4,5-trisphosphate generation. Together, our results suggest a central role for the SH2(N) domain in directing PLC-gamma 2 into the close proximity of BCR signaling complex by its association with BLNK, whereby PLC-gamma 2 becomes tyrosine phosphorylated and thereby activated.  相似文献   

14.
B lymphomas account for the majority of the lymphoma cases. BCR expression appears to be important for B lymphoma because most oncogenes are translocated to nonrearranged Ig loci and because all of the variants that arise in anti-idiotypic Ab-treated lymphoma patients remain BCR positive. Based on this and the fact that BCR is required for mature B cell survival, we tested the requirement for continued expression of BCR for the growth and survival of B lymphoma cells. Using Igalpha or Igbeta-specific small interfering RNA (siRNA) to inhibit BCR expression, we demonstrate for the first time that constitutive signaling by BCR is critical for survival and proliferation of both murine and human B lymphoma cells. The BCR signals in lymphoma appear to be mediated by Syk, as it is constitutively active in a variety of B lymphoma cells. Blocking Syk activity by selective inhibitors suppresses growth of several murine and human B lymphomas.  相似文献   

15.
Using STAT6(-/-) BALB/c mice, we analyzed the role of STAT6-induced Th2 response in determining the outcome of murine cysticercosis caused by the helminth parasite Taenia crassiceps. After T. crassiceps infection, wild-type BALB/c mice developed a strong Th2-like response; produced high levels of IgG1, IgE, IL-4, as well as IL-13; and remained susceptible to T. crassiceps. In contrast, similarly infected STAT6(-/-) mice mounted a strong Th1-like response; produced high levels of IgG2a, IL-12, IFN-gamma, as well as nitric oxide; and efficiently controlled T. crassiceps infection. These findings demonstrate that Th2-like response induced via STAT6-mediated signaling pathway mediates susceptibility to T. crassiceps and, furthermore, that unlike the case in most helminths, immunity against T. crassiceps is mediated by a Th1-like rather than Th2-like response.  相似文献   

16.
Cathelicidins (caths) are peptides that are expressed at high levels in neutrophils and some epithelia and can act as natural antibiotics by directly killing a wide range of microorganisms. We hypothesized that caths are expressed in mast cells (MCs), because these cells have been previously associated with inherent antimicrobial activity. Cultured murine MCs contained abundant amounts of cathelin-related antimicrobial peptide (AMP), the murine cath, and this expression was inducible by LPS or lipoteichoic acid. Human skin MCs also expressed cath as detected by immunohistochemical analysis for the human cath LL-37. The functional significance of this expression was shown by comparing MCs cultured from normal mice to MCs from littermates deficient in the cathelin-related AMP gene (Cnlp(-)). MCs derived from Cnlp(-/-) animals had a 50% reduction in their ability to kill group A STREPTOCOCCUS: These MCs expressed equivalent amounts of mRNA for murine beta-defensin-4, a beta-defensin AMP. Thus, different antimicrobials can be identified in MCs, and the presence of cath is necessary for efficient bacterial killing. These observations suggest that the presence of cath is vital to the ability of mammalian MCs to participate in antimicrobial defense.  相似文献   

17.
Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A   总被引:2,自引:0,他引:2  
Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.  相似文献   

18.
Mycoplasmas and their membranes are potent activators of macrophages, the active principle being lipoproteins and lipopeptides. Two stereoisomers of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 (MALP-2) differing in the configuration of the lipid moiety were synthesized and compared in their macrophage-activating potential, the R-MALP being >100 times more active than the S-MALP in stimulating the release of cytokines, chemokines, and NO. To assess the role of the Toll-like receptor (TLR) family in mycoplasmal lipopeptide signaling, the MALP-2-mediated responses were analyzed using macrophages from wild-type, TLR2-, TLR4-, and MyD88-deficient mice. TLR2- and MyD88-deficient cells showed severely impaired cytokine productions in response to R- and S-MALP. The MALP-induced activation of intracellular signaling molecules was fully dependent on both TLR2 and MyD88. There was a strong preference for the R-MALP in the recognition by its functional receptor, TLR2.  相似文献   

19.
The growth rate of Borrelia burgdorferi and Borrelia hermsii in BSK II medium prepared with cysteine-free or cysteine-containing (0.185-5.92 mM) CMRL 1066 medium was studied. In media with cysteine-free CMRL 1066, growth of borreliae was detectable, although it was reduced by approximately 80%. Bacterial growth was maximal when the concentration of cysteine in CMRL 1066 reached 1.48 mM, which represents the standard cysteine concentrations of the medium; higher concentrations inhibited the growth of borreliae. Cysteine incorporation, measured by the uptake of radiolabeled cysteine, showed that cysteine enters B. burgdorferi and B. hermsii cells by passive diffusion. Labeling studies of borreliae with [35S]cysteine indicated that B. burgdorferi has several cysteine-containing proteins, including ones at 22, 30 (OspA), and 34 kDa (OspB), whereas B. hermsii showed only two [35S]cysteine-incorporating proteins, at 22 and 24 kDa, which were exposed onto the outer cell surface. In addition, most of the cysteine-incorporating proteins could be biosynthetically radiolabeled when bacterial cells were grown in vitro with [3H]palmitate, and the differences in cysteine incorporation observed between B. burgdorferi and B. hermsii were found to be correlated with differences in lipoproteins.  相似文献   

20.
Borrelia burgdorferi lipoproteins activate inflammatory cells through Toll-like receptor 2 (TLR2), suggesting that TLR2 could play a pivotal role in the host response to B. burgdorferi. TLR2 does play a critical role in host defense, as infected TLR2(-/-) mice harbored up to 100-fold more spirochetes in tissues than did TLR2(+/+) littermates. Spirochetes persisted at extremely elevated levels in TLR2-deficient mice for at least 8 wk following infection. Infected TLR2(-/-) mice developed normal Borrelia-specific Ab responses, as measured by quantity of Borrelia-specific Ig isotypes, the kinetics of class switching to IgG, and the complexity of the Ags recognized. These findings indicate that the failure to control spirochete levels in tissues is not due to an impaired acquired immune response. While macrophages from TLR2(-/-) mice were not responsive to lipoproteins, they did respond to nonlipoprotein components of sonicated spirochetes. These TLR2-independent responses could play a role during the inflammatory response to B. burgdorferi, as infected TLR2(-/-) mice developed greater ankle swelling than wild-type littermates. Thus, while TLR2-dependent signaling pathways play a major role in the innate host defense to B. burgdorferi, both inflammatory responses and the development of the acquired humoral response can occur in the absence of TLR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号