首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R alpha/gamma(c)/IL-4) and type II (IL-4R alpha/IL-13R alpha1/IL-4, IL-4R alpha/IL-13R alpha1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for gamma(c)'s ability to recognize six different gamma(c)-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R alpha1 for a novel mode of cytokine engagement that contributes to a reversal in the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.  相似文献   

2.
The mechanisms by which prenatal events affect development of adult disease are incompletely characterized. Based on findings in a murine model of maternal transmission of asthma risk, we sought to test the role of the pro-asthmatic cytokines interleukin IL-4 and -13. To assess transplacental passage of functional cytokines, we assayed phosphorylation of STAT-6, a marker of IL-4 and -13 signaling via heterodimeric receptor complexes which require an IL-4 receptor alpha subunit. IL-4 receptor alpha−/− females were mated to wild-type males, and pregnant females were injected with supraphysiologic doses of IL-4 or 13. One hour after injection, the receptor heterozygotic embryos were harvested and tissue nuclear proteins extracts assayed for phosphorylation of STAT-6 by Western blot. While direct injection of embryos produced a robust positive control, no phosphorylation was seen after maternal injection with either IL-4 or -13, indicating that neither crossed the placenta in detectable amounts. The data demonstrate a useful approach to assay for transplacental passage of functional maternal molecules, and indicate that molecules other than IL-4 and IL-13 may mediate transplacental effects in maternal transmission of asthma risk.  相似文献   

3.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

4.
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.  相似文献   

5.
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.  相似文献   

6.
The Toll-interleukin-1 receptor (TIR) domain-containing orphan receptor SIGIRR (single immunoglobulin interleukin-1 receptor-related protein) acts as a negative regulator of interleukin (IL)-1 and lipopolysaccharide (LPS) signaling. Endogenous SIGIRR transiently interacted with IL-1 receptor and the receptor-proximal signaling components (MyD88, IRAK, and tumor necrosis factor receptor-associated factor 6) upon IL-1 stimulation, indicating that SIGIRR interacts with the IL-1 receptor complex in a ligand-dependent manner. Similar interaction was also observed between SIGIRR and Toll-like receptor 4 receptor complex upon LPS stimulation. To identify the domains of SIGIRR required for its interaction with the Toll-like receptor 4 and IL-1 receptor complexes, several SIGIRR deletion mutants were generated, including DeltaN (lacking the extracellular immunoglobulin (Ig) domain with deletion of amino acids 1-119), DeltaC (lacking the C-terminal domain with deletion of amino acids 313-410), and DeltaTIR (lacking the TIR domain with deletion of amino acids 161-313). Whereas both the extracellular Ig domain and the intracellular TIR domains are important for SIGIRR to inhibit IL-1 signaling, only the TIR domain is necessary for SIGIRR to inhibit LPS signaling. The extracellular Ig domain exerts its inhibitory role in IL-1 signaling by interfering with the heterodimerization of IL-1 receptor and IL-1RAcP, whereas the intracellular TIR domain inhibits both IL-1 and LPS signaling by attenuating the recruitment of receptor-proximal signaling components to the receptor. These results indicate that SIGIRR inhibits IL-1 and LPS signaling pathways through differential mechanisms.  相似文献   

7.
IL-4 is a key cytokine associated with allergy and asthma. Induction of cell signaling by IL-4 involves interaction with its cognate receptors, a complex of IL-4Ralpha with either the common gamma-chain or the IL-13R chain alpha1 (IL-13Ralpha1). We found that IL-4 bound to the extracellular domain of IL-4Ralpha (soluble human (sh)IL-4Ralpha) with high affinity and specificity. In contrast with the sequential mechanism of binding and stabilization afforded by IL-4Ralpha to the binding of IL-13 to IL-13Ralpha1, neither common gamma-chain nor IL-13Ralpha1 contributed significantly to the stabilization of the IL-4:IL-4Ralpha complex. Based on the different mechanisms of binding and stabilization of the IL-4R and IL-13R complexes, we compared the effects of shIL-4Ralpha and an IL-4 double mutein (R121D/Y124D, IL-4R antagonist) on IL-4- and IL-13-mediated responses. Whereas IL-4R antagonist blocked responses to both cytokines, shIL-4Ralpha only blocked IL-4. However, shIL-4Ralpha stabilized and augmented IL-13-mediated STAT6 activation and eotaxin production by primary human bronchial fibroblasts at suboptimal doses of IL-13. These data demonstrate that IL-4Ralpha plays a key role in the binding affinity of both IL-13R and IL-4R complexes. Under certain conditions, shIL-4Ralpha has the potential to stabilize binding IL-13 to its receptor to augment IL-13-mediated responses. Thus, complete understanding of the binding interactions between IL-4 and IL-13 and their cognate receptors may facilitate development of novel treatments for asthma that selectively target these cytokines without unpredicted or detrimental side effects.  相似文献   

8.
Interleukin (IL)-13 mediates its activities via a complex receptor system. Interleukin-13 receptor alpha-1 chain (IL-13Ralpha1) binds IL-13 with low affinity, but does not signal. However, when IL-13Ralpha1 combines with IL-4 receptor alpha (IL-4Ralpha), a signaling high affinity receptor complex for IL-13 is generated. In contrast, IL-13Ralpha2 alone binds IL-13 with high affinity, but does not signal and has been postulated to be a decoy receptor. Herein, we investigated the cellular localization of IL-13Ralpha2 and the regulation of its expression by confocal microscopy and flow cytometry in primary and cultured cells. Our results demonstrate that IL-13Ralpha2 is largely an intracellular molecule, which is rapidly mobilized from intracellular stores following treatment with interferon (IFN)-gamma. Up-regulation of IL-13Ralpha2 surface expression in response to IFN-gamma was rapid, did not require protein synthesis, and resulted in diminished IL-13 signaling. These results provide the first evidence that the IL-13Ralpha2 is predominantly an intracellular molecule and demonstrate a novel mechanism by which IFN-gamma can regulate IL-13 responses.  相似文献   

9.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

10.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

11.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

12.
Interleukin-13 (IL-13) is a critical mediator of pulmonary pathology associated with asthma. Drugs that block the biological function of IL-13 may be an effective treatment for asthma. IL-13 signals by forming a ternary complex with IL-13Rα1 and IL-4R. Genetic variants of IL-13 and of its receptor components have been linked to asthma. One in particular, IL-13R110Q, is associated with increased IgE levels and asthma. We characterized the interactions of the binary complexes composed of IL-13 or IL-13R110Q with IL-13Rα1 and the ternary complexes composed of IL-13 or IL-13R110Q and IL-13Rα1 with IL-4R using surface plasmon resonance and time-resolved fluorescence resonance energy transfer (TR-FRET). By both biophysical methods, we found no differences between IL-13 and IL-13R110Q binding in either the binary or the ternary complex. IL-4R bound to the IL-13/IL-13Rα1 complex with slow on and off rates, resulting in a relatively weak affinity of about 100 nM. We developed a TR-FRET assay targeting the interaction between the IL-4R and the binary complex. Two antibodies with known binding epitopes to IL-13 that block binding to either IL-13Rα1 or IL-4R inhibited the TR-FRET signal formed by the ternary complex. This assay will be useful to identify and characterize inhibitory molecules of IL-13 function.  相似文献   

13.
Eosinophils play a primary role in the pathophysiology of asthma. In the lung, the activation state of the infiltrating eosinophils determines the extent of tissue damage. Interleukin-5 (IL-5) and leukotriene B4 (LTB4) are important signaling molecules involved in eosinophil recruitment and activation. However, the physiological processes that regulate these activation events are largely unknown. In this study we have examined the mechanisms of human eosinophil NADPH oxidase regulation by IL-5, LTB4, and phorbol ester (PMA). These stimuli activate a Zn2+-sensitive plasma membrane proton channel, and treatment of eosinophils with Zn2+ blocks superoxide production. We have demonstrated that eosinophil intracellular pH is not altered by IL-5 activation of NADPH oxidase. Additionally, PKCdelta inhibitors block PMA, IL-5 and LTB4 mediated superoxide formation. Interestingly, the PKCdelta-selective inhibitor, rottlerin, does not block proton channel activation by PMA indicating that the oxidase and the proton conductance are regulated at distinct phosphorylation sites. IL-5 and LTB4, but not PMA, stimulated superoxide production is also blocked by inhibitors of PI 3-kinase indicating that activation of this enzyme is an upstream event common to both receptor signaling pathways. Our results indicate that the G-protein-coupled LTB4 receptor and the IL-5 cytokine receptor converge on a common signaling pathway involving PI 3-kinase and PKCdelta to regulate NADPH oxidase activity in human eosinophils.  相似文献   

14.
Interleukin-4 (IL-4) is an important class I cytokine involved in adaptive immunity. IL-4 binds with high affinity to the single-pass transmembrane receptor IL-4Rα. Subsequently, IL-4Rα/IL-4 is believed to engage a second receptor chain, either IL-2Rγ or IL-13Rα1, to form type I or II receptor complexes, respectively. This ternary complex formation then triggers downstream signaling via intracellular Janus kinases bound to the cytoplasmic receptor tails. Here, we study the successive steps of complex formation at the single cell level with confocal fluorescence imaging and correlation spectroscopy. We characterize binding and signaling of fluorescently labeled IL-4 by flow cytometry of IL-4-dependent BaF3 cells. The affinity to ectopically expressed IL-4Rα was then measured by single-color fluorescence correlation spectroscopy in adherent HEK293T cells that express the components of the type II IL-4R but not type I. Finally, IL-4-induced complex formation was tested by dual-color fluorescence cross-correlation spectroscopy. The data provide evidence for codiffusion of IL-4-A647 bound IL-4Rα and the type II subunit IL-13Rα1 fused to enhanced green fluorescent protein, whereas type I complexes containing IL-2Rγ and JAK3 were not detected at the cell surface. This behavior may reflect hitherto undefined differences in the mode of receptor activation between type I (lymphoid) and type II (epithelial) receptor expressing cells.  相似文献   

15.
Two interleukin 13 receptors (IL-13Rs) have been identified as IL-13Ralpha1 and IL-13Ralpha2. IL-13Ralpha1 is composed of a heterodimer consisting of IL-13Ralpha1 and IL-4 receptor alpha (IL-4Ralpha) as a signaling subunit. In contrast, IL-13Ralpha2 is known as a decoy receptor for IL-13. In this study, we investigated the expression of IL-13Rs on human fibroblasts. IL-13Ralpha2 was significantly up-regulated after stimulation with tumor necrosis factor-alpha (TNF-alpha) and/or IL-4. In contrast, IL-13Ralpha1 was constitutively detectable and was not up-regulated. After the induction of IL-13alpha2 by IL-4, STAT6 phosphorylation through IL-13Ralpha1 by IL-13 was inhibited. We also detected large intracellular pools of IL-13Ralpha2 in fibroblasts quantitatively. Furthermore, mobilization of the IL-13Ralpha2 protein stores from the cytoplasm to the cell surface was prevented by an inhibitor of protein transport, brefeldin-A. These results indicate that TNF-alpha and IL-4 synergistically up-regulate the expression of IL-13Ralpha2 decoy receptor on human fibroblasts by inducing gene expression and mobilizing intracellular receptors, and thus may down-regulate the IL-13 signaling.  相似文献   

16.
17.

Background

Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation.

Methods

NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition.

Results

Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling.

Conclusion

These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a pro-inflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV.  相似文献   

18.
Interleukin-13 is a Th2-associated cytokine responsible for many pathological responses in allergic asthma including mucus production, inflammation, and extracellular matrix remodeling. In addition, IL-13 is required for immunity to many helminth infections. IL-13 signals via the type-II IL-4 receptor, a heterodimeric receptor of IL-13Rα1 and IL-4Rα, which is also used by IL-4. IL-13 also binds to IL-13Rα2, but with much higher affinity than the type-II IL-4 receptor. Binding of IL-13 to IL-13Rα2 has been shown to attenuate IL-13 signaling through the type-II IL-4 receptor. However, molecular determinants that dictate the specificity and affinity of mouse IL-13 for the different receptors are largely unknown. Here, we used high-density overlapping peptide arrays, structural modeling, and molecular docking methods to map IL-13 binding sequences on its receptors. Predicted binding sequences on mouse IL-13Rα1 and IL-13Rα2 were in agreement with the reported human IL-13 receptor complex structures and site-directed mutational analysis. Novel structural differences were identified between IL-13 receptors, particularly at the IL-13 binding interface. Notably, additional binding sites were observed for IL-13 on IL-13Rα2. In addition, the identification of peptide sequences that are unique to IL-13Rα1 allowed us to generate a monoclonal antibody that selectively binds IL-13Rα1. Thus, high-density peptide arrays combined with molecular docking studies provide a novel, rapid, and reliable method to map cytokine-receptor interactions that may be used to generate signaling and decoy receptor-specific antagonists.  相似文献   

19.
Interleukin-25 (IL-25) is a cytokine associated with allergy and asthma that functions to promote type 2 immune responses at mucosal epithelial surfaces and serves to protect against helminth parasitic infections in the intestinal tract. This study identifies the IL-25 receptor, IL-17RB, as a key mediator of both innate and adaptive pulmonary type 2 immune responses. Allergen exposure upregulated IL-25 and induced type 2 cytokine production in a previously undescribed granulocytic population, termed type 2 myeloid (T2M) cells. Il17rb(-/-) mice showed reduced lung pathology after chronic allergen exposure and decreased type 2 cytokine production in T2M cells and CD4(+) T lymphocytes. Airway instillation of IL-25 induced IL-4 and IL-13 production in T2M cells, demonstrating their importance in eliciting T cell-independent inflammation. The adoptive transfer of T2M cells reconstituted IL-25-mediated responses in Il17rb(-/-) mice. High-dose dexamethasone treatment did not reduce the IL-25-induced T2M pulmonary response. Finally, a similar IL-4- and IL-13-producing granulocytic population was identified in peripheral blood of human subjects with asthma. These data establish IL-25 and its receptor IL-17RB as targets for innate and adaptive immune responses in chronic allergic airway disease and identify T2M cells as a new steroid-resistant cell population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号