首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The susceptibility of 20 widely distributed mill and table olive varieties to Bactrocera oleae (Rossi) as affected by irrigation, and fruit diameter and oil content was evaluated in a 3‐year trial in Southern Spain. Bactrocera oleae was bivoltine life cycle in the experimental site, with significant differences among population size throughout the study. Even though the olive fruit fly damaged all varieties, significant differences in susceptibility were detected. Among the mill olive varieties “Nevadillo Blanco de Jaén” was the most susceptible, with average infestation levels ranging between 6.7% and 52.2% and between 10.3% and 69.2% under rainfed and irrigated conditions, respectively, and “Arbequina” was the least susceptible, with average infestation levels ranging between 0.6% and 12.7% and between 2.3% and 18.5% under rainfed and irrigated conditions, respectively. Among the table olive varieties, “Gordal Sevillana,” “Ascolana Tenera” and “Ocal” were the most susceptible (with average infestation levels reaching 39.7%, 36.5% and 33.3%, respectively), while “Callosina” was the least susceptible (with infestation levels of only 8.4%). Irrigation tended to promote both B. oleae infestation and its earlier occurrence compared to the rainfed condition. Even though the diameter and oil content were positively correlated with B. oleae fruit infestation (correlation coefficients ranged between 0.5 and 0.95), the present work reveals that other yet‐unknown factors may influence B. oleae oviposition preferences. The results of this study can be useful for breeding programmes to develop olive varieties resistant to B. oleae and provide key information for wide‐area olive fly pest management decisions.  相似文献   

2.
Psyttalia lounsburyi (Silvestri) and P. humilis (Silvestri) (Hymenoptera: Braconidae) were evaluated in California for their potential to control the invasive olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Psyttalia lounsburyi is a specialist on B. oleae while P. humilis also attacks other tephritid species. Field cage trials, conducted from 2006 to 2009, were used to compare P. lounsburyi and two populations of P. humilis (Kenya and Namibia) in California’s interior valley and coastal regions. Both parasitoid species reproduced on B. oleae in all trials. Under similar abiotic conditions, offspring production per female was higher in P. humilis than in P. lounsburyi, suggesting that host specificity by P. lounsburyi does not confer a higher efficiency on B. oleae in cultivated olives. Two abiotic factors were shown to impact parasitoid efficiency. First, adult parasitoid survival was poor during periods of high summer temperatures, common to the olive production areas in California’s interior valleys. Second, parasitism levels were lower on B. oleae larvae feeding in larger Ascolano cv. fruit than in smaller Manzanillo cv. fruit. Results are discussed relative to biological control of B. oleae in commercial olives and the usefulness of natural enemies specialized to attack fruit flies in wild olives compared with the larger cultivated olive fruit.  相似文献   

3.
The olive fruit fly Bactrocera oleae is responsible for worldwide economic damage. In this report, we describe the first B. oleae lines transinfected with the Wolbachia strain wCer2, an endosymbiont of the cherry fruit fly Rhagoletis cerasi. Immunostaining followed by confocal microscopy, detects high numbers of Wolbachia in embryos as well as in ovarioles and sperm from individuals of both transinfected lines. wCer2 was uniformly distributed in B. oleae egg chambers and the cortex of preblastoderm embryos. Wolbachia is known to manipulate host reproduction with several strategies, one of which is cytoplasmic incompatibility (CI), resulting in embryonic mortality in incompatible crosses. Wolbachia was found to induce complete CI in the novel host, suggesting that symbiont‐based approaches can be used as novel environmentally friendly tools for the control of natural olive fruit fly populations.  相似文献   

4.
Olive fruit fly is a key pest of olive and consequently a serious threat to olive fruit and oil production throughout the Mediterranean region. With the establishment of Bactrocera oleae in California a decade ago, interest was renewed in classical (introduction) biological control of the pest. Here we discuss the prospects of identifying natural enemies of B. oleae in Africa and Asia that may help reduce B. oleae populations in California and elsewhere. Based on the current understanding of Bactrocera phylogenetics, early opinions that B. oleae originated in Africa or western Asia rather than the Mediterranean region or the Near East are taxonomically and ecologically supportable. Closely related to cultivated olive, the wild olive Olea europaea cuspidata is widely distributed in southern and eastern Africa, the Arabian Peninsula, and eastwards into Asia as far as southwestern China. Little is known regarding the biology and ecology of B. oleae in Africa and eastern Asia, especially in wild olives. While the diversity of parasitoids of B. oleae in the Mediterranean region is low and unspecialized, a diverse assemblage of parasitoids is known from B. oleae in Africa. Conversely, regions in Asia have remained largely unexplored for B. oleae and its natural enemies.  相似文献   

5.
The susceptibility of olive cultivars to the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), has seldom been studied. This article examines factors associated with olive fruit fly infestation of 16 commonly planted Sicilian olive cultivars. Total infestation data were simultaneously correlated with categorical and quantitative factors using ordinal logistic regression. When all factors were included in the analysis, year, sampling date, cultivar, and fruit color were highly significant, but the quantitative factors fruit volume, fruit elongation, and fruit hardness were not. When the analysis was repeated excluding cultivar, all quantitative factors were significant, and elongation and volume were highly significant. Spherical, large, and hard fruit seemed to be preferred by B. oleae over fruit that are elongate, small, and soft. Therefore, fruit color, elongation, volume, and hardness provide useful information regarding the susceptibility of cultivars. In both organic and conventional olive cultivation, information about olive cultivar susceptibility to olive fruit fly will help orchard managers to produce quality oil and table olives while reducing treatments for olive fruit fly control.  相似文献   

6.
Bactrocera oleae is the single most important insect pest of the olive fruit, causing extensive of the losses in the olive production annually. Nonetheless, there has never been an analysis of the homogeneity of B. oleae populations, the extent of gene flow, the genetic differentiation and/or reproductive isolation of marginal populations or the nature of the invasive populations in newly established olive tree cultivations. Here we describe the development of 10 novel polymorphic microsatellite markers that can be used in the analysis of natural B. oleae populations as well as to create a basis for its genome analysis.  相似文献   

7.
To date, information is wanting with regard to the use of new exotic parasitoids against olive fruit fly, Bactrocera (=Dacus) oleae (Gmelin) (Diptera: Tephritidae), a serious pest of olives Olea europaea L., in the Mediterranean basin. We investigated the oviposition response and developmental biology on B. oleae of Fopius (=Biosteres) arisanus (Sonan) (=Opius oophilus Fullaway) (Hymenoptera: Braconidae), an egg-pupal parasitoid of tephritid fruit flies, never tested before as a potential parasitoid of this host. Our results showed that olive fruits infested with B. oleae eggs exerted a relevant attraction to gravid F. arisanus and represented a stimulus for oviposition. Nevertheless they were not as attractive to female parasitoids as the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), eggs infested papaya fruits (Carica papaya L.). In our experimental conditions, F. arisanus completed development in B. oleae within 33 ± 1.7 days (males) and 35 ± 1.6 (females). Increases in host egg to female parasitoid ratios of 1:1, 5:1, 10:1 and 20:1 corresponded with decreases in the percentage of B. oleae parasitisation and host killing but corresponded also with increases in absolute parasitisation. Our findings are discussed in light of possibilities of utilising F. arisanus for biological control of olive fruit fly.  相似文献   

8.
One possible control strategy against the olive fly, Bactrocera oleae, the most serious olive crop pest, is the Sterile Insect Technique (SIT) application. However, a number of problems associated with this method remain that decrease the effectiveness of SIT, including the quality of reared insects. Taking the importance of the relationship between the olive fly and bacteria into consideration, the effects of probiotic diets enriched with Pseudomonas putida on B. oleae longevity and fecundity were evaluated. First, we found that the probiotic bacterium, P. putida, is conveyed from diets to the oesophageal bulb as well as to the fly midgut after feeding on the probiotic diet. Subsequently, B. oleae adults fed on either: (a) a standard full protein and sugar diet; (b) a sugar only diet; (c) a probiotic standard full protein and sugar diet; or (d) a probiotic sugar diet. Flies fed on probiotic diets were supplied with an inoculated gel containing P. putida; non‐inoculated gel was provided to the flies fed on non‐probiotic diets. B. oleae males and females that fed on sugar diets did not survive as long as those that fed on protein diets. A comparison of the longevity of adults fed on full diet and sugar with their respective probiotic diets revealed no significant difference. Males fed on the sugar only diet survived longer than males fed on probiotic sugar diet, and females fed on the full protein and sugar diet survived much longer than females fed on the full probiotic diet. As regarding fecundity, both full diets resulted in a higher number of eggs laid per female. Females fed on the probiotic sugar diet laid a higher number of eggs than females that fed on sugar only. The inoculated gel of the probiotic sugar diet contained a significantly higher quantity of leucine, isoleucine and proline than the non‐inoculated gel of the sugar only diet. The possible role of dietary bacteria in relation to functional aspects of olive fly physiology is discussed.  相似文献   

9.
Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)—the olive fruit fly—is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae–Ca. E. dacicola, or other B. oleae–microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid–microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.  相似文献   

10.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

11.
The Iberian Peninsula (Portugal and Spain) is a great production area of olives. The fruit production can be severely affected by the olive fruit fly, Bactrocera oleae (Rossi, 1790) (Diptera). Detailed geographical distribution maps of key pests, such as B. oleae, are essential for their integrated management. Although different sources reporting the occurrence of B. oleae are available for sub-regions of Portugal and Spain, the data available are dispersed and centralisation of this information considering the Iberian Peninsula as a faunistic geographical unit is currently lacking. In this work, we built two distribution maps of B. oleae throughout the Iberian Peninsula, one based on occurrence sites and another based on its bioclimatic habitat suitability. After modelling the bioclimatic suitability of B. oleae using a maximum entropy model, three potential distribution areas beyond the previously known occurrence range of the olive fruit fly were identified corresponding to the autonomous community of Galicia (Spain), the Spanish and Portuguese sides of the International Douro Natural Park, and the autonomous community of Castilla y León (Spain). Interestingly, each region houses nowadays autochthonous olive cultivars. The drivers that most contributed to the model were the precipitation of the coldest quarter and the precipitation of driest month which agrees with the B. oleae bioecology. Although our approach is not fully-comprehensive in terms of occurrence sites, we show how a maxent modelling approach can be useful to identify potential risk areas of B. oleae occurrence throughout a target geographical extent such as the Iberian Peninsula.  相似文献   

12.
The virulence of two isolates of the hyphomycete fungi, Beauveria bassianaand B. brongniartii, and additional fungal species isolated from diseased Bactrocera oleae pupae and Sesamia nonagrioideslarvae were assessed against adults of the olive fruit fly B. oleae and the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Contact and oral bioassays revealed that moderate to high mortality rates for the olive fruit fly occurred when the adults were exposed to conidia of Mucor hiemalis, Penicillium aurantiogriseum, P. chrysogenum and B. bassianaisolates. A strain of M. hiemalis isolated from S. nonagrioides larvae was the most toxic resulting in 85.2% mortality to the olive fruit fly adults. B. brongniartiiand B. bassiana were the most pathogenic to the C. capitataadults causing 97.4 and 85.6% mortality. Metabolites collected from the M. hiemalis and P. chrysogenum isolates were toxic to adults of both species.  相似文献   

13.
Soil arthropods can provide ecosystem services, such as biological control of crop pests that spend part of their life cycle in the soil. This is the case of Bactrocera oleae (Rossi) (Diptera: Tephritidae), one of the most important pests of olives. The impact of edaphic arthropods on the abundance of B. oleae pupae was evaluated and their contribution for biological control of the pest was quantified. Exclusion and exposed boxes with B. oleae pupae were installed in olive groves in parallel with pitfall traps used for sampling arthropods and the percentage of pupae suppression was evaluated from January to May 2014. Forficulidae dominated the community during the winter period while Formicidae dominated in spring. Pupae suppression reached the maximum value in the beginning of spring and these results indicate that soil arthropods have strong impact in the decline of B. oleae pupae in olive groves.  相似文献   

14.
The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactrocera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situhybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleaeprovided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoniand Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.  相似文献   

15.
1 The egg‐prepupal parasitoid Fopius arisanus (Hymenoptera: Braconidae) was evaluated in quarantine facilities as a potential biological control agent for the olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California, U.S.A. 2 Nontarget testing of two weed biological control agents confirmed that F. arisanus will not attack Tephritidae that feed in inflorescences or galls. It may, however, pose risks to native Tephritidae that feed in fruit. 3 Females preferentially oviposited in eggs, although first‐instar B. oleae were also attacked. Low lifetime reproductive potential and high rates of direct mortality inflicted on host eggs indicate that rearing on B. oleae may prove difficult. 4 In multiparasitized B. oleae, F. arisanus prevailed in competition against two species of larval–pupal parasitoids, Diachasmimorpha kraussii and Psyttalia concolor (both Hymenoptera: Braconidae). 5 The broad host‐range of F. arisanus with respect to fruit‐feeding Tephritidae may preclude its introduction to California, as may its low fecundity and its intrinsic competitive superiority over larva l–pupal parasitoids, which include specialists on B. oleae that are currently being introduced to California. High rates of direct mortality, however, point to potential uses in augmentative biological control. Whether or not F. arisanus is released in California, its biology as a parasitoid of B. oleae has been little studied to date and the results herein may be applied in other regions worldwide where B. oleae is a problem.  相似文献   

16.
The relationship between Bactrocera oleae (Rossi 1790) and its endosymbiont Candidatus Erwinia dacicola is important to achieving effective control of the olive fly population in the field. This bacterium plays a crucial role in the life of B. oleae and is necessary for its fitness. Thus, in the absence of the endosymbiont, B. oleae wild populations in the field might decrease considerably. Copper is one of the most used antimicrobials for horticultural crops worldwide, and its efficacy against Ca. E. dacicola has been demonstrated in field trials. Propolis is another natural antimicrobial compound largely used for its activity in several fields. If propolis and copper prove to be efficient against wild populations of the endosymbiont B. oleae in the field, such a biological restraint might improve sustainable agriculture. We evaluated, under laboratory conditions, the effect of two different copper products (at two different concentrations, 5% and 20%) and propolis on the content of Ca. E. dacicola in the eggs and in the adult oesophageal bulbs of B. oleae. Bulbs were extracted twice, after 2 and 5 weeks of exposure. Real‐time PCR on the bulbs showed a reduction in Ca. E. dacicola content in flies treated with copper (at both 5% and 20%), and from the first to the second extraction, while flies treated with propolis showed an increment of the relative abundance of Ca. E. dacicola. Both copper products (5% and 20%) reduced the egg production after 2 and 5 weeks in comparison with the control and propolis treatments. Moreover, adult mortality was significantly higher with propolis compared with the other treatments. Thus, our results encourage further research in order to develop new tools for the control of the olive fly in the framework of an integrated pest management strategy.  相似文献   

17.
The olive fruit fly (Bactrocera oleae Gmelin) is the most important olive pest in the north‐eastern Adriatic coast region. Despite the importance of olive production in the region, and the significance of the olive fruit fly, no information with respect to genetic diversity, population structure or dispersion patterns of this pest is available. The aims of this study were to investigate the genetic structure of the olive fly population in the Slovenian Istria region using microsatellite markers to determine olive fruit fly migration between locations and to establish an appropriate and effective strategy for controlling the pest population. Analysis was performed on a sample of 117 flies, collected from attacked olive fruits at three different locations. Olive fruit flies were genotyped using eight microsatellite loci. Sixty‐six alleles were identified over all microsatellite loci with an average of 8.25 alleles per locus. The population structure was determined with methods based on Bayesian principles using the BAPS 6.0 and STRUCTURE 2.3 programs. Genetic analysis confirmed unlimited migration and random mating between individuals of different microlocations, which suggests time‐coordinated first treatment in the region would be the best solution.  相似文献   

18.
19.
Conservation biological control aims to enhance the efficacy of biological control agents, such as predators and parasitoids, by providing them access to key requisites, for example floral or other alternative food resources. However, the occurrence of floral resources in agricultural systems may have positive effects not only on natural enemies but also on the pests themselves. For this reason, we have studied in laboratory common Mediterranean plants as potential food resources for an important lepidopteran olive pest, the olive moth, Prays oleae. The effects of 15 wild flowering plants from olive grove ecosystems, and four sugars present in floral nectars, on key biological parameters of P. oleae (i.e. longevity, pre-oviposition and oviposition periods, fertility and fecundity) were evaluated. The three pest generations were analysed. Only few of the plants tested increased some reproductive parameters of the insect individuals compared to the water-fed controls, while sugars generally improved them. This could be due to a higher concentration of sugars provided by individual sugars than by flower nectar. These results indicate that, in general, P. oleae will not benefit from the availability of the floral resources tested.  相似文献   

20.
Abstract Prays oleae Bern, (OM) and Palpita unionalis Hüb., (JM) are two of the most important pests in olive groves in Egypt. A 3‐year monitoring study using sex pheromone traps in semi‐arid and arid olive groves was performed. In the semi‐arid grove, flight pattern of the OM was the same as in other Mediterranean countries, but in dates concordating plant phenology. The moth completes three generations annually: the first flight is in March to April, the second is in May to June and the third occurs in August to October. In the arid olive grove, an interesting flight pattern was observed. First flight was always very close or overlapped with the second one with no male catches during August to October. However, eggs were present most of the season, indicating unusually high female presence and oviposition activity of the OM during the absence of males in the traps. Generally, moth densities were significantly lower in low fruiting years than in higher ones and were also lower in the arid olive grove than in the semi‐arid one. In contrast, JM males were present all season, exhibiting six to seven and three to four overlapping flight peaks in arid and semi‐arid olive groves, respectively. Moth densities were significantly higher in the arid olive grove than those in the semi‐arid one. This study shows that trapping location and fruit bearing year are characteristics that strongly affect the grove‐specific information needed to estimate correctly adult emergence and thus the timing of control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号