首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cordgrasses in the genus Spartina are good examples of ecosystem engineers that modify habitat structure in estuaries throughout the world. In San Francisco Bay, California, USA, marshes containing native California cordgrass (Spartina foliosa) are being invaded by a hybrid (S. alterniflora × S. foliosa) formed after introduction of S. alterniflora. This study compared vegetation, sediment structure, and infaunal invertebrates in native and invaded marshes. We hypothesized that differences in the physical structure between S. foliosa and hybrid Spartina would be reflected in differences in density, biomass, diversity, and taxonomic composition of infauna. Hybrid Spartina modifies habitat structure more than S. foliosa by producing taller stems, and greater plant biomass both above- and belowground while occupying a much wider tidal range, thereby transforming open mudflats to a vegetated habitat. In general, S. foliosa areas contained significantly higher densities of benthic infauna than adjacent mudflats, while hybrid Spartina areas never contained greater infaunal densities than mudflats. This is because S. foliosa produces a moderate level of structure that can facilitate benthic invertebrates, whereas hybrid Spartina produces so much structure, particularly belowground, that it actually excludes invertebrates. Therefore, we suggest that these two closely related species both act as ecosystem engineers, but with opposing effects on invertebrate communities.  相似文献   

2.
Ascomycetous fungi play an important role in the early stages of decomposition of Spartina alterniflora, but their role in the decomposition of other Spartina species has not been investigated. Here we use fingerprint (terminal restriction fragment length polymorphism) and phylogenetic analyses of the 18S to 28S internal transcribed spacer region to compare the composition of the ascomycete fungal communities on early decay blades of Spartina species (Spartina alterniflora, Spartina densiflora, Spartina foliosa, and a hybrid (S. alterniflora × S. foliosa)) collected from three salt marshes in San Francisco Bay and one in Tomales Bay, California, USA. Phaeosphaeria spartinicola was found on all samples collected and was often dominant. Two other ascomycetes, Phaeosphaeria halima and Mycosphaerella sp. strain 2, were also common. These three species are the same ascomycetes previously identified as the dominant fungal decomposers on S. alterniflora on the east coast. Ascomycetes appeared to exhibit varying degrees of host specificity, demonstrated by grouping patterns on phylogenetic trees. Neither the exotic S. alterniflora nor the hybrid supported fungal flora different from that of the native S. foliosa. However, S. densiflora had a significantly different fungal community than the other species, and hosted at least two unique ascomycetes. Significant differences in the fungal decomposer communities were also detected within species (two clones of S. foliosa), but these were minor and may be due to morphological differences among the plants.  相似文献   

3.
Four species of exotic cordgrass (Spartina sp.) occur in the San Francisco estuary in addition to the California native Spartina foliosa. Our goal was to map the location and extent of all non-native Spartina in the estuary. Hybrids of S. alterniflora and S. foliosa are by far the most numerous exotic and are spreading rapidly. Radiating from sites of deliberate introduction, S. alterniflora and hybrids now cover ca. 190 ha, mainly in the South and Central Bay. Estimates of rate of aerial increase range from a constant value to an accelerating rate of increase. This could be due to the proliferation of hybrid clones capable of rapid expansion and having superior seed set and siring abilities. The total coverage of 195 ha by hybrids and other exotic cordgrass species is slightly less than 1% of the Bay's tidal mudflats and marshes. Spartina anglica has not spread beyond its original 1970s introduction site. Spartina densiflora has spread to cover over 5 ha at 3 sites in the Central Bay. Spartina patens has expanded from 2 plants in 1970 to 42 plants at one site in Suisun Bay. Spartina seed floats on the tide, giving it the potential to export this invasion throughout the San Francisco estuary, and to estuaries outside of the Golden Gate. We found isolated plants of S. alterniflora and S. densiflora in outer coast estuaries north of the Bay suggesting the likelihood for the San Francisco Bay populations to found others on the Pacific coast.  相似文献   

4.
Flow cytometry analysis showed variation of nuclear DNA content among different species of Spartina. Spartina alterniflora had the biggest genome (1763.9 Mbp) and S. cynosuroides had the smallest genome (756.35 Mbp), whereas the genomes of S. patens (969.36 Mbp) and S. spartinae (979.78 Mbp) were comparable. Mining simple sequence repeats (SSR) from 1227 expressed sequence tags (EST) generated from salt stressed S. alterniflora showed an abundance of di- and tri-nucleotide repeats. Of 100 ESSR (EST-derived SSR) loci with five or more repeats, 81 loci were successfully amplified in eight S. alterniflora genotypes and 15 (22.2%) ESSR markers were polymorphic. Eleven of the 15 polymorphic ESSRs showed amplification across six different species of Spartina while 100% cross transferability was observed with at least one species of Spartina. The average number of alleles per marker was 3.9 and 5.8 within S. alterniflora and among Spartina species, respectively. The ESSR markers discriminated different members within and between species of Spartina genus.  相似文献   

5.
Studies examining the impacts of introduced species on food webs often focus on the top-down effects of introduced predators. However, marine and estuarine systems have been invaded by plants that have the potential to alter carbon and nitrogen sources available to consumers. In San Francisco Bay, California, USA, hybridized cordgrass Spartina alterniflora × foliosa is adding C4 carbon biomass to this system. We used natural abundances of stable isotopes of carbon and nitrogen to examine whether infaunal and epifaunal food webs reflected the large detrital input from hybrid Spartina. We compared stable isotope signatures among macrofaunal invertebrate consumers collected in hybrid Spartina, native S. foliosa, or unvegetated mudflats. We found no additional shift towards hybrid Spartina in hybrid areas. Structural changes brought about by an invasive ecosystem engineer, specifically increased biomass and detrital inputs, do not necessarily result in its increased incorporation into the food web.  相似文献   

6.
7.
Seedlings of Spartina alterniflora Loisel. from Oregon Inlet, North Carolina were generally taller and produced significantly more culms and total dry weight than those of S. foliosa Trin. from two California populations (Alameda Beach and Marin County) in eight photoperiod-temperature treatments over a 17-wk period. Seedlings of S. alterniflora produced maximal biomass in 30–26 C whereas those of S. foliosa produced maximal biomass in 22–18 C, both under long-day conditions. The average photosynthesis rate for S. alterniflora (3.0 mg C g dry wt−- hr−-1) was 1.6 times higher than that for S. foliosa (1.9 mg C g dry wt−-1 hr−-1), but the dark respiration rates (0.3 and 0.4 mg C g dry wt−-1 hr−-1, respectively) were not significantly different. The proportion of rhizomes was greater under short than long-day conditions for both species in most temperature regimes. The average shoot soluble carbohydrate and starch concentrations were higher for S. foliosa (8.4 and 0.9%, respectively) than those for S. alterniflora (6.0 and 0.4%, respectively). The average rhizome soluble carbohydrate concentration (18%) for S. alterniflora under long-day conditions was significantly lower than that under short-day conditions (28%) and also lower than those for S. foliosa under both long (26%) and short-day (25%) conditions. Rhizome starch concentrations of S. alterniflora were significantly higher in the short than in most long-day temperatures and were generally higher for S. alterniflora than for S. foliosa under short-day conditions. The root starch concentration of S. alterniflora under short-day conditions (1.3%) was higher than that under long-day conditions (0.2%) and also higher than those of S. foliosa under both long (0.2%) and short-day (0.7%) conditions. The two species exhibited similar patterns of carbohydrate storage in belowground organs, similar flower initiation processes not under strict photoperiod control, and similar respiration rates, but significantly different photosynthetic rates and growth responses with S. alterniflora having the potential to be the more productive species.  相似文献   

8.
9.
While several studies have documented that invasive plants can change the microbial communities, little is known about how soil microbial communities respond to population variation of invasive plants. Here, nine populations of Spartina alterniflora were selected from the east coast of China along latitudinal gradient to compare bacterial diversity of rhizospheres among these populations. The bacterial diversity in S. alterniflora rhizospheres was valued by denaturing gradient gel electrophoresis (DGGE) analysis. Shannon–Weaver diversity index (H′) and number of DGGE bands showed that rhizosphere bacterial diversity of S. alterniflora populations increased along a latitudinal gradient when all the populations were grown in a common garden. These findings suggest that population variation of S. alterniflora can differentiate the rhizosphere bacterial diversity, and the latitudinal gradient can shape the specific plant–bacterial diversity relationship. Our results adding to the recent literature suggest that invasive plant–soil biota interactions would have clinal variation with environmental gradients and improve our understanding of the mechanisms and processes of plant invasions.  相似文献   

10.
《Aquatic Botany》2010,92(4):262-266
Flow cytometry analysis showed variation of nuclear DNA content among different species of Spartina. Spartina alterniflora had the biggest genome (1763.9 Mbp) and S. cynosuroides had the smallest genome (756.35 Mbp), whereas the genomes of S. patens (969.36 Mbp) and S. spartinae (979.78 Mbp) were comparable. Mining simple sequence repeats (SSR) from 1227 expressed sequence tags (EST) generated from salt stressed S. alterniflora showed an abundance of di- and tri-nucleotide repeats. Of 100 ESSR (EST-derived SSR) loci with five or more repeats, 81 loci were successfully amplified in eight S. alterniflora genotypes and 15 (22.2%) ESSR markers were polymorphic. Eleven of the 15 polymorphic ESSRs showed amplification across six different species of Spartina while 100% cross transferability was observed with at least one species of Spartina. The average number of alleles per marker was 3.9 and 5.8 within S. alterniflora and among Spartina species, respectively. The ESSR markers discriminated different members within and between species of Spartina genus.  相似文献   

11.
Spartina alterniflora, smooth cordgrass, native to the eastern USA, was introduced into south San Francisco Bay ≈ 25 years ago. It has spread by purposeful introduction of rooted plants and dispersal of seeds on the tides. Previous work suggested that S. alterniflora was competitively superior to the native California cordgrass, S. foliosa, and that the two species hybridized. The present study determined the spread of S. alterniflora and S. foliosa × alterniflora hybrids in California and examined the degree of hybridization. We used nuclear DNA markers diagnostic for each species to detect the parental species and nine categories of hybrids. The California coast outside San Francisco Bay contained only the native species. All hybrid categories exist in the Bay, implying that several generations of crossing have occurred and that hybridization is bidirectional. Hybrids were found principally near sites of deliberate introduction of the exotic species. Where S. alterniflora was deliberately planted, we found approximately equal numbers of S. alterniflora and hybrid individuals; S. foliosa was virtually absent. Marshes colonized by water-dispersed seed contained the full gamut of phenotypes with intermediate-type hybrids predominating. The proliferation of hybrids could result in local extinction of S. foliosa. What is more, S. alterniflora has the ability to greatly modify the estuary ecosystem to the detriment of other native species and human uses of the Bay. To the extent that they share these engineering abilities, the proliferation of cordgrass hybrids could grossly alter the character of the San Francisco Bay.  相似文献   

12.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

13.
Plant hybridization can lead to the evolution of invasiveness. We wished to determine whether hybrids between the largely self-sterile Atlantic Spartina alterniflora and California native S. foliosa had evolved self-fertility during their ca 30 year existence in San Francisco Bay, CA. In pollination experiments we found that neither of the parental species was self-fertile, nor were early generation hybrids. A large fraction of later generation hybrids were profusely self-fertile. Inbreeding depression was high in the parental species and early generation hybrids, but was much reduced in later generation hybrids—some even showed outbreeding depression. We found that populations of later generation hybrids and their seedling progeny were almost two-fold more homozygous than early generation hybrids, consistent with the evidence of increased selfing shown by our parentage analyses based upon 17 microsatellite markers. We posit that evolved self-fertility has contributed substantially to the rapid spread of hybrid Spartina in San Francisco Bay.  相似文献   

14.
15.
Invasive species frequently degrade habitats, disturb ecosystem processes, and can increase the likelihood of extinction of imperiled populations. However, novel or enhanced functions provided by invading species may reduce the impact of processes that limit populations. It is important to recognize how invasive species benefit endangered species to determine overall effects on sensitive ecosystems. For example, since the 1990s, hybrid Spartina (Spartina foliosa × alterniflora) has expanded throughout South San Francisco Bay, USA, supplanting native vegetation and invading mudflats. The endangered California clapper rail (Rallus longirostris obsoletus) uses the tall, dense hybrid Spartina for cover and nesting, but the effects of hybrid Spartina on clapper rail survival was unknown. We estimated survival rates of 108 radio-marked California clapper rails in South San Francisco Bay from January 2007 to March 2010, a period of extensive hybrid Spartina eradication, with Kaplan–Meier product limit estimators. Clapper rail survival patterns were consistent with hybrid Spartina providing increased refuge cover from predators during tidal extremes which flood native vegetation, particularly during the winter when the vegetation senesces. Model averaged annual survival rates within hybrid Spartina dominated marshes before eradication (? = 0.466) were greater than the same marshes posttreatment (? = 0.275) and a marsh dominated by native vegetation (? = 0.272). However, models with and without marsh treatment as explanatory factor for survival rates had nearly equivalent support in the observed data, lending ambiguity as to whether hybrid Spartina facilitated greater survival rates than native marshland. Conservation actions to aid in recovery of this endangered species should recognize the importance of available of high tide refugia, particularly in light of invasive species eradication programs and projections of future sea-level rise.  相似文献   

16.
17.
Spread of smooth cordgrass (Spartina alterniflora) in China is an exceptional example of unanticipated outcomes arising from intentional introductions. It has been proposed that in China, management strategies used to establish S. alterniflora inadvertently promoted evolutionary outcomes that have contributed to other Spartina invasions. In this study, we assessed whether S. alterniflora in China exhibits genetic signatures of mechanisms known to promote invasion success, including large founding populations, evolved self-fertility, ‘superior source ecotypes’, and post-introduction admixture. This involved comparing microsatellite genotype and chloroplast haplotype variation among Chinese populations to other invasive S. alterniflora populations as well as native range populations, inclusive of samples from all reported source areas. We found distinct signatures of source population contributions to Chinese populations, as well as evidence of post-introduction admixture, and no evidence of limitations from a genetic bottleneck. Measures of inbreeding were well below what has been found in other non-native populations that have evolved self-fertility. Differences in genetic diversity among sites were similar to latitudinal patterns in the native range, but could be attributable to introduction history. Comparisons to other invasive populations indicate that a combination of common and idiosyncratic processes have contributed to the success of S. alterniflora in China and elsewhere, with intentional introductions promoting mechanisms that accelerate rates of spread and widespread invasion.  相似文献   

18.
In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa × alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the ’unvegetated areas’. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.  相似文献   

19.
Maritime Spartina spp. are powerful ecosystem engineers that accrete sediment, define shorelines, create habitat, and generate prodigious primary productivity both where they are native and where they have been introduced. Invasive Spartina spp. can compete vigorously with native species, diminish biota, change hydrology, and confound human uses of estuaries. Herbicides have been effective in controlling several Spartina spp. invasions. One of the most recent successes is a 15-year campaign that has virtually eliminated S. alterniflora from the large, century-old invasion in Willapa Bay, WA, USA. Hybridization between native and introduced Spartina spp. has created new species and hybrid swarms. In San Francisco Bay, CA, USA (SF Bay) a complicated situation continues to play out from the purposeful introduction of S. alterniflora, which hybridized with native California cordgrass, S. foliosa. The hybrids spread rapidly and led to a long list of environmental problems, which led to an herbicide program that was successful in greatly diminishing the hybrid and saving the open mud habitat of migratory shorebirds. However, it was belatedly realized that the non-migratory, endangered Ridgeway’s rail uses the tall, dense hybrid Spartina as a surrogate for habitat that was lost during the twentieth century to urbanization and agricultural transformation of marshes around SF Bay. This realization has made difficult the simultaneous management of hybrid Spartina, wildlife conservation, and marsh restoration in San Francisco Bay. Restoration of native vegetation could satisfy the multiple goals of preserving open mud and conserving Ridgeway’s rail.  相似文献   

20.
Along the Atlantic coast of South America, the northern salt marshes (lower than 43°S) are dominated by Spartina species while the southern salt marshes (greater than 43°S) are dominated by Sarcocornia perennis. The most abundant Spartina species are Spartina densiflora which is present in most coastal marshes, and Spartina alterniflora that was never recorded above the ~42°25′S. It is not clear why S. alterniflora has not succeeded in the southern marshes, in which the low marsh zone remains as an extensive bared mud flat. We address the hypothesis that the absence of S. alterniflora in the south is driven by the cold temperatures inversely related with increasing latitudes along the East coast of Patagonia. To evaluate this hypothesis, we carried out an experiment in which we manipulated the temperature in combination with frost formation and photoperiod. We found that cold temperature produced a negative effect on S. alterniflora, and this effect seems accentuated by the frost but not by the reduction in the photoperiod. Our results support the hypothesis that the absence of S. alterniflora in the southernmost salt marshes of Patagonia is a consequence of the frost as an outcome of the co-occurrence of low temperature and high humidity. The importance of our results are discussed in the context of the global warming and how Spartina species enlarge their distributional range toward higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号