首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The primary structure of cis-prenyltransferase is totally different from those of trans-prenyltransferases (Shimizu, N., Koyama, T., and Ogura, K. (1998) J. Biol. Chem. 272, 19476-19481). To better understand the molecular mechanism of enzymatic cis-prenyl chain elongation, we selected seven charged residues in the conserved Region V and two of Phe-Ser motif in Region III of undecaprenyl diphosphate synthase of Micrococcus luteus B-P 26 for substitutions by site-directed mutagenesis and examined their effects on substrate binding and catalysis. Kinetic studies indicated that replacements of Arg-197 or Arg-203 with Ser, and Glu-216 with Gln resulted in 7-11-fold increases of Km values for isopentenyl diphosphate and 18-1200-fold decreases of kcat values compared with those of the wild-type enzyme. In addition, two mutants with respect to the Phe-Ser motif in Region III, F73A and S74A, showed 16-32-fold larger Km values for isopentenyl diphosphate and 12-16-fold lower kcat values than those of the wild-type. Furthermore, product analysis indicated that three mutants, F73A, S74A, and E216Q, yielded shorter chain prenyl diphosphates as their main products. These facts together with the protein structural analysis recently carried out (Fujihashi, M., Zhang, Y.-W., Higuchi, Y., Li, X.-Y., Koyama, T., and Miki, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4337-4342) indicated that the diphosphate moiety of homoallylic substrate is electrostatically recognized by the three charged amino acids, Arg-197, Arg-203, and Glu-216, in Region V and the Phe-Ser motif in Region III, also indispensable for homoallylic substrate binding as well as catalytic function. It was suggested that the undecaprenyl diphosphate synthase takes a different mode for the binding of isopentenyl diphosphate from that of trans-prenyl chain elongating enzymes.  相似文献   

2.
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.  相似文献   

3.
The primary structures of cis-prenyltransferases are completely different from those of trans-prenyltransferases. To obtain information about amino acid residues relating to catalytic function, random mutation of the undecaprenyl diphosphate synthase gene of Micrococcus luteus B-P 26 was carried out to construct a mutated gene library using an error-prone polymerase chain reaction. From the library, the mutants showing poor enzymatic activity were selected by the colony autoradiography method. Among 31 negative clones selected from 3,000 mutants, two clones were found to contain only one amino acid substitution at either Asn-77 or Trp-78. To determine the functional roles of these interesting residues, we prepared six mutated enzymes with substitutions at residues Asn-77 or Trp-78 by site-directed mutagenesis. Substitution of Asn-77 with Ala, Asp, or Gln resulted in a dramatic decrease in catalytic activity, but the K(m) values for both allylic and homoallylic substrates of these mutant enzymes were comparable to those of the wild-type. On the other hand, three Trp-78 mutants, W78I, W78R, and W78D, showed 5-20-fold increased K(m) values for farnesyl diphosphate but not for Z-geranylgeranyl diphosphate. However, these mutants showed moderate levels of enzymatic activity and comparable K(m) values for isopentenyl diphosphate to that of the wild-type. These results suggest that the Asn-Trp motif is involved in the binding of farnesyl diphosphate and enzymatic catalysis.  相似文献   

4.
In order to investigate the substrate binding feature of undecaprenyl diphosphate synthase from Micrococcus luteus B-P 26 with respect to farnesyl diphosphate and a reaction intermediate, (Z,E,E)-geranylgeranyl diphosphate, we examined the reactivity of artificial substrate analogs, 3-desmethyl farnesyl diphosphate and 3-desmethyl Z-geranylgeranyl diphosphate, which lack the methyl group at the 3-position of farnesyl diphosphate and Z-geranylgeranyl diphosphate, respectively. Undecaprenyl diphosphate synthase did not accept either of the 3-desmethyl analogs as the allylic substrate, indicating that the methyl group at the 3-position of the allylic substrate is important in the undecaprenyl diphosphate synthase reaction. These analogs showed different inhibition patterns in the cis-prenyl chain elongation reaction with respect to the reactions of farnesyl diphosphate and Z-geranylgeranyl diphosphate as allylic substrate. These results suggest that the binding site for the natural substrate farnesyl diphosphate and those for the intermediate allylic diphosphate, which contains the cis-prenyl unit, are different during the cis-prenyl chain elongation reaction.  相似文献   

5.
An undecaprenyl diphosphate synthase fraction, which was free of other prenyltransferases and was active without the addition of detergent or phospholipid, was obtained by Sephadex G-100 chromatography of cell-free extracts of Micrococcus luteus B-P 26 cells. The addition of small amounts of Triton X-100 to this fraction caused a marked loss of the enzyme activity, but the activity was gradually restored as further detergent was added. When the enzyme fraction was chromatographed on DEAE-cellulose, the synthase was partially purified, but the activity was not detected unless assayed with addition of the detergent or a lipid fraction of this bacterium. Among the three phospholipids isolated from this bacterium, cardiolipin and phosphatidylglycerol had a marked effect in activating lipid-depleted undecaprenyl diphosphate synthase, but O-lysylphosphatidylglycerol, which occurs prominently in this bacterium, had little effect.  相似文献   

6.
Formation of a stable complex of the two essential components of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26, which represents the catalytically active state of this enzyme, is observed in the presence of a relatively high concentrations of inorganic pyrophosphate or one of the substrates, isopentenyl diphosphate or farnesyl diphosphate. The apparent molecular mass of the complex is estimated to be about 50 kDa by gel filtration with Superose 12.  相似文献   

7.
I Yoshida  T Koyama  K Ogura 《Biochemistry》1987,26(21):6840-6845
Hexaprenyl diphosphate synthase from Micrococcus luteus BP-26, which has been known to be dissociated into two essential components, designated as components A and B, during hydroxyapatite chromatography [Fujii, H., Koyama, T., & Ogura, K. (1982) J. Biol. Chem. 257, 14610-14612], was also resolved similarly by Sephadex G-100 or DEAE ion-exchange chromatography. Each component takes various self-aggregated forms. The apparent molecular mass of component B estimated by gel filtration on Superose 12 varied depending on its concentration, ranging from approximately 18 to 49 kilodaltons (kDa). On the other hand, the apparent molecular mass of component A varied depending on not only its concentration but also the ionic strength of the medium, ranging from approximately 13 to 24 kDa. When a mixture of components A and B preincubated in the presence of Mg2+ but in the absence of substrate was subjected to Superose 12 gel filtration, they were eluted at positions identical with those observed when they were chromatographed individually. In contrast, when a mixture of components A and B incubated in the presence of Mg2+ and substrates was filtrated on Superose 12, the elution positions were markedly changed, showing that an approximately 24-kDa aggregate of component A (designated as A) and an approximately 27-kDa aggregate of component B (designated as B) were the major species. Evidence was also obtained to show that farnesyl diphosphate (FPP) binds to the components to form an aggregate, A-B-FPP-Mg2+, which probably represents an intermediary state of enzyme catalysis.  相似文献   

8.
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.  相似文献   

9.
Three prenyl transferases in Micrococcus luteus were recovered in the soluble fraction following cell disruption. Undecaprenyl pyrophosphate (C55-PP) synthetase chromatographed on DEAE-cellulose independently from geranylgeranyl-PP and octaprenyl-PP synthetases. Further purification of C55-PP synthetase resulted in an approximate 250-fold purification over the crude lysate. The molecular weight of the synthetase was estimated to be between 47,000 and 49,000 by Sephadex G-100 chromatography. The enzyme had a broad specificity toward the allylic pyrophosphate substrate. The reactivities of the allylic substrates increased with chain length, C10 < C15 < C20, except for trans-solanesyl-PP, which was unreactive. Moreover, the enzyme was active on allylic substrates having both cis- and trans-stereochemistry. Although C55-PP and C50-PP were the major products, some shorter chain products were also produced, when t,t-farnesyl pyrophosphate and Δ3sopentenyl pyrophosphate (IPP) were used as substrates. The stereochemistries of the products formed with C55-PP synthetase were established, using [14C]IPP and 2R-[2-3H] and 2S-[2-3H]IPP. Each new isoprene unit added had a cis-configuration. The enzyme was inactive in the absence of added effectors. It was stimulated by Triton X-100, egg lecithin, and a whole phospholipid extract from M. luteus. Cardiolipin and deoxycholate were poor activators of the enzyme. The product chain length distribution observed with the phospholipid-activated enzyme showed highly favored production of the C55-PP product over the C50-PP product.  相似文献   

10.
Comparison of the farnesyl diphosphate (FPP) synthase amino acid sequences from four species with amino acid sequences from the related enzymes hexaprenyl diphosphate synthase and geranylgeranyl diphosphate synthase show the presence of two aspartate rich highly conserved domains. The aspartate motif ((I, L, or V)XDDXXD) of the second of those domains has homology with at least 9 prenyl transfer enzymes that utilize an allylic prenyl diphosphate as one substrate. In order to investigate the role of this second aspartate-rich domain in rat FPP synthase, we mutated the first or third aspartate to glutamate, expressed the wild-type and mutant enzymes in Escherichia coli, and purified them to apparent homogeneity using a single chromatographic step. Approximately 12 mg of homogeneous protein was isolated from 120 mg of crude bacterial extract. The kinetic parameters of the purified wild-type recombinant FPP synthase containing the DDYLD motif were as follows: Vmax = 0.84 mumol/min/mg; GPP Km = 1.0 microM; isopentenyl diphosphate (IPP) Km = 2.7 microM. Substitution of glutamate for the first aspartate (EDYLD) decreased the Vmax by over 90-fold. The Km for IPP increased, whereas the Km for GPP remained the same in this D243E mutant. Substitution of glutamate for the third aspartate (DDYLE) did not result in altered enzyme kinetics in the D247E mutant. These results suggest that the first aspartate in the second domain is involved in the catalysis by FPP synthase.  相似文献   

11.
Peters RJ  Croteau RB 《Biochemistry》2002,41(6):1836-1842
Abietadiene synthase catalyzes two sequential, mechanistically distinct cyclization reactions in the formation of a mixture of abietadiene double bond isomers as the committed step in resin acid biosynthesis. Each reaction is carried out at a separate active site residing in a structurally distinct domain, and the reactions are kinetically separable. The first cyclization reaction is initiated by protonation of the terminal double bond of the universal diterpene precursor, geranylgeranyl diphosphate. The pH dependence of the overall reaction is consistent with an acid-base catalytic mechanism, and a divalent metal ion plays a role in this reaction probably by binding the diphosphate moiety to assist in positioning the substrate for catalysis. A putative active site for the protonation-initiated cyclization was defined by modeling abietadiene synthase and locating the DXDD motif previously shown to be involved in this reaction. A number of charged and aromatic residues, which are highly conserved in mechanistically related diterpene cyclases, line the putative active site. Alanine substitutions were made for each of these residues, as were asparagine and glutamate substitutions for the aspartates of the DXDD motif. Kinetic evaluation confirmed the involvement of most of the targeted residues in the reaction, and analysis of mutational effects on the pH-activity profile and affinity for a transition state analogue suggested specific roles for several of these residues in catalyzing the cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. A functional role was also suggested for the cryptic insertional element found in abietadiene synthase and other diterpene synthases that carry out similar protonation-initiated cyclizations.  相似文献   

12.
In order to evaluate the potential contribution of conserved aromatic residues to the hydrophobic active site of 3-hydroxy-3-methylglutaryl-CoA synthase, site-directed mutagenesis was employed to produce Y130L, Y163L, F204L, Y225L, Y346L, and Y376L proteins. Each mutant protein was expressed at levels comparable with wild-type enzyme and was isolated in highly purified form. Initial kinetic characterization indicated that F204L exhibits a substantial (>300-fold) decrease in catalytic rate (kcat). Upon modification with the mechanism-based inhibitor, 3-chloropropionyl-CoA, or in formation of a stable binary complex with acetoacetyl-CoA, F204L exhibits binding stoichiometries comparable with wild-type enzyme, suggesting substantial retention of active site integrity. Y130L and Y376L exhibit inflated values (80- and 40-fold, respectively) for the Km for acetyl-CoA in the acetyl-CoA hydrolysis partial reaction; these mutants also exhibit an order of magnitude decrease in kcat. Formation of the acetyl-S-enzyme reaction intermediate by Y130L, F204L, and Y376L proceeds slowly in comparison with wild-type enzyme. However, solvent exchange into the thioester carbonyl oxygen of these acetyl-S-enzyme intermediates is not slow in comparison with previous observations for D159A and D203A mutants, which also exhibit slow acetyl-S-enzyme formation. The magnitude of the differential isotope shift upon exchange of H218O into [13C]acetyl-S-enzyme suggests a polarization of the thioester carbonyl and a reduction in bond order. Such an effect may substantially contribute to the upfield 13C NMR shift observed for [13C]acetyl-S-enzyme. The influence on acetyl-S-enzyme formation, as well as observed kcat (F204L) and Km (Y130L; Y376L) effects, implicate these invariant residues as part of the catalytic site. Substitution of phenylalanine (Y130F, Y376F) instead of leucine at residues 130 and 376 diminishes the effects on catalytic rate and substrate affinity observed for Y130L and Y376L, underscoring the influence of aromatic side chains near the active site.  相似文献   

13.
Soderberg T  Poulter CD 《Biochemistry》2001,40(6):1734-1740
Dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes alkylation of the exocyclic amine of adenosine at position 37 in some tRNAs by the hydrocarbon moiety of dimethylallyl diphosphate (DMAPP). A multiple-sequence alignment of 28 gene sequences encoding DMAPP-tRNA transferases from various organisms revealed considerable homology, including 11 charged, 12 polar, and four aromatic amino acids that are highly conserved or conservatively substituted. Site-directed mutants were constructed for all of these amino acids, and a tripeptide Glu-Glu-Phe alpha-tubulin epitope was appended to the C-terminus of the protein to facilitate separation by immunoaffinity chromatography of overproduced mutant enzymes from coexpressed chromosomally encoded wild-type DMAPP-tRNA transferase. Steady-state kinetic constants were measured for wild-type DMAPP-tRNA transferase and the site-directed mutants using DMAPP and a 17-base RNA oligoribonucleotide corresponding to the stem-loop region of tRNA(Phe) as substrates. Substantial changes in k(cat), K(m)(DMAPP), and/or K(m)(RNA) were seen for several of the mutants, suggesting possible roles for these residues in substrate binding and catalysis.  相似文献   

14.
The structural genes encoding the two essential components A and B of hexaprenyl diphosphate synthase, which produce the precursor of the prenyl side chain of menaquinone-6, were cloned from Micrococcus luteus B-P 26.  相似文献   

15.
Y W Zhang  X Y Li  H Sugawara  T Koyama 《Biochemistry》1999,38(44):14638-14643
Heptaprenyl diphosphate synthase of Bacillus subtilis is composed of two dissociable heteromeric subunits, component I and component II. Component II has highly conserved regions typical of (E)-prenyl diphosphate synthases, but it shows no prenyltransferase activity alone unless it is combined with component I. Alignment of amino acid sequences for component I and the corresponding subunits of Bacillus stearothermophilus heptaprenyl diphosphate synthase and Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase shows three regions of high similarity. To elucidate the role of these regions of component I during catalysis, 13 of the conserved amino acid residues in these regions were selected for substitution by site-directed mutagenesis. Kinetic studies indicated that substitutions of Val-93 with Gly, Leu-94 with Ser, and Tyr-104 with Ser resulted in 3-10-fold increases of K(m) values for the allylic substrate and 5-15-fold decreases of V(max) values compared to those of the wild-type enzyme. The three mutated enzymes, V93G, L94S, and Y104S, showed little binding affinity to the allylic substrate in the membrane filter assay. Furthermore, product analyses showed that D97A yielded shorter chain prenyl diphosphates as the main product, while Y103S gave the final product with a C(40) prenyl chain length. These results suggest that some of the conserved residues in region B of component I are involved in the binding of allylic substrate as well as determining the chain length of the enzymatic reaction product.  相似文献   

16.
Micrococcus luteus cells died relatively quickly when they were added to natural soil. The results were similar for soil in nature and as soil samples in the laboratory. The cells died more quickly when nutrients were added to the soil. Those cells that survived soil residence exhibited a temporary lengthening of the time required for colonial growth and pigment formation on laboratory media. They had not gained increased survival capability, however. This was evident when they were retested in soil. Good survival of the M. luteus cells was noted when the soil was incubated at lowered temperatures. Some protection to the cells was provided by slow drying of the soil during incubation or by addition of NaCl. Microscopic examination of the soil revealed that the M. luteus cells were being physically destroyed and that two different bacteria were growing in the areas where the cells had lysed. It was suggested that bacterial predators in the soil might be associated with the death of the M. luteus cells.  相似文献   

17.
18.
Micrococcus luteus cells died relatively rapidly when they were added to natural soil. Microscopic observation showed that the cells were being physically destroyed by bacterial predators in the soil. Two of these predators were responsible for the initial, main attack, and they were isolated. The isolates on laboratory media lysed M. luteus cells in a manner similar to the attacks that occurred in soil. Neither predator was obligate, however, nor were they nutritionally fastidious. One of these bacteria produced mycelium and conidia. Under nutritionally poor conditions it used slender filaments of mycelium to seek out host cells. It had at least some of the characteristics of a Streptoverticillium species. The other bacterium was a short, gram-negative rod that did not easily fit into any of the known groups of gram-negative bacteria. It attached to host cells, but its mechanism of lysing these cells is not known.  相似文献   

19.
The activity of solanesyl-diphosphate synthase from Micrococcus luteus is stimulated by a high molecular mass fraction (HMF) which is separated from cell-free extracts of the same bacterium by DEAE-Toyopearl chromatography followed by Sephadex G-100 chromatography. By employing HMF in the assay procedure, solanesyl-diphosphate synthase was able to be purified to homogeneity and was found to be a homodimer with a monomeric molecular mass of 34 kDa. In contrast to hexaprenyl- and heptaprenyl-diphosphate synthases, which are composed of two easily dissociable components that are inactive unless combined, the homogeneously purified solanesyl-diphosphate synthase itself showed a catalytic activity, though weak, catalyzing the synthesis of both (all-E)-nonaprenyl-(solanesyl-) and (all-E)-octaprenyl diphosphate. HMF does not affect the stability of solanesyl-diphosphate synthase or Km values for isopentenyl diphosphate and farnesyl diphosphate, but it markedly increases Vmax values in a time-dependent manner. Several lines of evidence indicate that HMF contains a factor which binds to polyprenyl products and removes them out of the active site of enzyme to facilitate and maintain the turnover of catalysis.  相似文献   

20.
Roles of conserved methionine residues in tobacco acetolactate synthase   总被引:2,自引:0,他引:2  
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号