首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Mineralocorticoid receptors (MR) have equal affinity for the mineralocorticoid aldosterone, and the physiological glucocorticoids cortisol and corticosterone. In epithelial tissues in vivo, MR are protected against glucocorticoid occupancy by the enzyme 11β-hydroxysteroid dehydrogenase, allowing access by the lower circulating levels of the physiological mineralocorticoid aldosterone. In non-epithelial tissues, including the heart and most areas of the central nervous system, MR are not so protected, and their physiological ligand is cortisol/corticosterone. Intracerebroventricular infusion studies have shown that aldosterone occupancy of such unprotected circumventricular MR is necessary for mineralocorticoid hypertension, and the hypertensinogenic effects of peripherally infused aldosterone can be blocked by intracerebroventricular infusion of the MR antagonist RU28318. Prolonged (8 weeks) administration of mineralocorticoids to salt-loaded rats has been shown to be followed by hypertension, cardiac hypertrophy and cardiac fibrosis. Whether the hypertrophy and fibrosis reflect primary effects of aldosterone via cardiac MR, or effects secondary to occupancy of protected, epithelial MR, remains to be determined, as does the mechanism of action of salt loading in this model of mineralocorticoid hypertension.  相似文献   

5.
The brain tissues of the rat and mouse express two types of corticosteroid binding proteins, the glucocorticoid (GR) and aldosterone (MR) receptors. Unlike the type II (GR) receptor, type I receptor has a high affinity for aldosterone (ALDO) and corticosterone and is structurally similar to the kidney mineralocorticoid receptor (MR). The results reported in this study provide direct evidence for the interaction of dexamethasone (DEX), triamcinolone acetonide (TA), dexamethasone-21-mesylate (DXM) and 11-deoxycorticosterone (DOC) with human MR expressed in cells by transient co-transfection of a hMR expression vector. The interactions of hMR with DEX, TA, DXM, DOC, promegestone (R5020) and methyltrienelone (R1881) were measured by trans-activation of mouse mammary tumor virus long terminal repeat fused to bacterial chloramphenicol acetyltransferase (MMTV-tk-CAT) in gene co-transfection experiments and by cell free hormone binding assay. The incubation of various steroid hormones in the presence of [3H]ALDO in a competition assay with extracts prepared from HeLa cells co-transfected with hMR expression vector, showed that hMR expressed under these conditions has a high relative affinity for DEX which is similar to ALDO, TA and DOC. Incubation with DXM under these conditions showed very little competition, as was observed with R1881 and R5020. Incubation of the co-transfected cells with DEX, ALDO, DOC, R5020, TA, R1881 and DXM demonstrated that the level of trans-activation did not reflect the previously observed order of binding affinity for the hMR. The level of transactivation was always higher with DEX and TA compared to ALDO and DOC. Analysis of the binding of labeled glucocorticoid regulatory element (GRE) and hMR incubated with DEX, ALDO and DXM by gel shift analysis demonstrated that the trans-activation of MMTV-tk-CAT by hMR is a result of the interaction of hMR with GRE in the MMTV-LTR.  相似文献   

6.
The deleterious effects of aldosterone excess demonstrated in cardiovascular diseases might be linked in part to coronary vascular dysfunction. However, whether such vascular dysfunction is a cause or a consequence of the changes occurring in the cardiomyocytes is unclear. Moreover, the possible link between mineralocorticoid receptor (MR)-mediated effects on the cardiomyocyte and the coronary arteries is unknown. Thus we used a mouse model with conditional, cardiomyocyte-specific overexpression of human MR (hMR) and observed the effects on endothelial function in isolated coronary segments. hMR overexpression decreased the nitric oxide (NO)-mediated relaxing responses to acetylcholine in coronary arteries (but not in peripheral arteries), and this was prevented by a 1-mo treatment either with an MR antagonist, vitamin E/vitamin C, or a NADPH oxidase inhibitor. hMR overexpression did not affect coronary endothelial NO synthase content nor its level of phosphorylation on serine 1177, but increased cardiac levels of reactive oxygen species, cardiac NADPH oxidase (NOX) activity, and expression of the NOX subunit gp91phox, which was limited to endothelial cells. Thus an increase in hMR activation, restricted to cardiomyocytes, is sufficient to induce a severe coronary endothelial dysfunction. We suggest a new paracrine mechanism by which cardiomyocytes trigger a NOX-dependent, reactive oxygen species-mediated coronary endothelial dysfunction.  相似文献   

7.
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. The glucocorticoid cortisol binds the MR with equivalent affinity to that of the mineralocorticoids aldosterone and deoxycorticosterone. In nonepithelial tissues, including the myocardium, which do not express the cortisol-inactivating enzyme 11β hydroxysteroid dehydrogenase 2, cortisol has been implicated in the activation of MR. The mechanisms for ligand- and tissue-specific actions of the MR are undefined. Over the past decade, it has become clear that coregulator proteins are critical for nuclear receptor-mediated gene expression. A subset of these coregulators may confer specificity to MR-mediated responses. To evaluate whether different physiological ligands can induce distinct MR conformations that underlie differential coregulator recruitment and ligand-specific gene regulation, we utilized phage display technology to screen 10(8) 19mer peptides for their interaction with the MR in the presence of agonist ligands. We identified ligand-selective MR-interacting peptides that acted as potent antagonists of MR-mediated transactivation. This represents a novel mechanism of MR antagonism that may be manipulated in the rational design of a ligand- or tissue-selective MR modulator to treat diseases like heart failure without side effects such as hyperkalemia.  相似文献   

8.
In the distal colon, the epithelial sodium channel (ENaC) is rate limiting for sodium absorption. Progress in the molecular characterization of ENaC expression and trafficking in response to the mineralocorticoid aldosterone has been hampered, since no epithelial colonic cell line existed expressing functional ENaC stimulated by nanomolar aldosterone via mineralocorticoid receptor (MR). Here, we present a human colonic epithelial cell line inducibly expressing the MR (HT-29/B6-Tet-On-MR) which exhibits aldosterone-dependent ENaC-mediated sodium transport in the presence of the short-chain fatty acid butyrate. Butyrate was necessary for high-level expression of MR which allowed for aldosterone-dependent upregulation of β- and γ-ENaC expression. As butyrate alone was not capable of promoting ENaC-mediated sodium transport, aldosterone-induced GILZ (glucocorticoid-induced leucine zipper protein) was identified as a candidate factor increasing apical ENaC levels.  相似文献   

9.
The mineralocorticoid signaling pathway has gained interest over the past few years, considering not only its implication in numerous pathologies but also its emerging role in physiological processes during kidney, brain, heart and lung development. This review aims at describing the setting and regulation of aldosterone biosynthesis and the expression of the mineralocorticoid receptor (MR), a nuclear receptor mediating aldosterone action in target tissues, during the perinatal period. Specificities concerning MR expression and regulation during the development of several major organs are highlighted. We provide evidence that MR expression is tightly controlled in a tissue-specific manner during development, which could have major pathophysiological implications in the neonatal period.  相似文献   

10.
The early phase of the stimulatory effect of aldosterone on sodium reabsorption in renal epithelia is thought to involve activation of apical sodium channels. However, the genes initiating this effect are unknown. We used a combination of polymerase chain reaction-based subtractive hybridization and differential display techniques to identify aldosterone-regulated immediate early genes in renal mineralocorticoid target cells. We report here that aldosterone rapidly increases mRNA levels of a putative Ser/Thr kinase, sgk (or serum- and glucocorticoid-regulated kinase), in its native target cells, i.e. in cortical collecting duct cells. The effect occurs within 30 min of the addition of aldosterone, is mediated through mineralocorticoid receptors, and does not require de novo protein synthesis. The full-length sequences of rabbit and mouse sgk cDNAs were determined. Both cDNAs show significant homology to rat and human sgk (88-94% at the nucleotide level, and 96-99% at the amino acid level). Coexpression of the mouse sgk in Xenopus oocytes with the three subunits of the epithelial Na+ channel results in a significantly enhanced Na+ current. These results suggest that sgk is an immediate early aldosterone-induced gene, and this protein kinase plays an important role in the early phase of aldosterone-stimulated Na+ transport.  相似文献   

11.
The mineralocorticoid receptor (MR) binds aldosterone, but also glucocorticoid hormones (corticosterone in rodents, cortisol in humans), which largely prevail in the plasma. To prevent permanent and maximal occupancy of MR by glucocorticoid hormones in aldosterone-target cells, specific effects of aldosterone require metabolism of glucocorticoid hormones into 11-dehydroderivatives by 11-beta hydroxysteroid dehydrogenase (11-HSD2). We analyzed the effect of corticosterone or 11-dehydrocorticosterone (11-DHC) on the transactivation activity of the MR, transiently expressed in a new renal cell line expressing 11-HSD2. We show that, because of its metabolism by 11-HSD2, corticosterone is a poor activator of MR transactivation, except at micromolar concentrations, where the enzyme is saturated. We also show that high micromolar concentrations of 11 DHC are required to activate the MR. The weak antagonist property of 11-DHC on aldosterone-induced hMR transactivations is also documented. Such partial agonist activity of 11-DHC is discussed in the light of its positioning in a three-dimensional model of the MR ligand-binding domain.  相似文献   

12.
13.
RALES, EPHESUS and redox   总被引:4,自引:0,他引:4  
In RALES, low doses of the mineralocorticoid receptor (MR) antagonist spironolactone, added to standard of care for severe heart failure, improved survival by 30% and lowered hospitalization by 35%. Animal studies with the selective MR antagonist eplerenone have similarly shown MR blockade to prevent the cerebral, renal and coronary vascular inflammatory response to elevated aldosterone levels. There is now general acceptance that aldosterone concentrations inappropriate for salt status have major deleterious effects on the cardiovascular system.

In many instances, however (e.g. Randomized Aldactone Evaluation Study (RALES), EPHESUS) aldosterone levels are normal and salt status unremarkable and yet MR blockade has unquestioned benefits. In these instances, there is increasing evidence that coronary and cardiac MR are activated by normal circulating cortisol levels, in the cellular context of generation of reactive oxygen species (ROS) and/or alteration in intracellular redox status.

MR in VSMC and cardiomyocytes are normally predominantly occupied by cortisol in tonic inhibitory mode. Blockade of 11β hydroxysteroid dehydrogenase type II (11βHSD2) or ROS generation both serve to activate cortisol–MR complexes, thus mimicking the effects of mineralocorticoid/salt imbalance on blood vessels and the heart. In RALES and EPHESUS, it is likely that the antagonists are blocking normal levels of cortisol, not aldosterone, from activating MR in the context of tissue damage and ROS generation. If this is the case, MR antagonists may be of wide therapeutic potential in cardiovascular disease and not confined to those characterized by aldosterone/salt excess. Finally, the pathophysiologic roles of always-occupied MR in ‘unprotected’ tissues such as cardiomyocytes or neurons in response to altered intracellular redox status remain to be explored.  相似文献   


14.
The molecular mechanisms by which aldosterone regulates epithelial sodium transport in the distal colon and the distal nephron remain to be fully elucidated. Aldosterone acts via the mineralocorticoid receptor (MR) to induce the expression of genes whose products are involved in sodium transport. The structural basis of MR interactions with aldosterone has been examined by creating chimeras of the MR and the closely related glucocorticoid receptor; we have exploited differences in ligand-binding specificity to determine the region(s) of the MR that confer aldosterone-binding specificity. These findings have been related to a three-dimensional model of the MR based on the crystal structure of the progesterone receptor. These studies have been extended to include the characterisation of interactions between the N- and C-termini of the MR. We have characterised six genes that are regulated in vivo in the distal colon and/or kidney of the rat that are directly and acutely regulated by aldosterone administration: the three subunits of the epithelial sodium channel, serum and glucocorticoid-induced kinase, channel-inducing factor and K-ras2A. These studies provide insights into the molecular pathways that mediate aldosterone-induced amiloride-sensitive epithelial sodium transport.  相似文献   

15.
The full-length human renal mineralocorticoid receptor (hMR) has been overproduced in Spodoptera frugiperda (Sf9) insect cells using baculovirus-mediated expression. The overproduced hMR binds aldosterone with high affinity (Kd = 1.36 nM) and has high affinity for cortisol, cortexolone, and progesterone. Immunoprecipitation and immunoblot analysis of the recombinant hMR with MR-specific antibodies reveal three major protein bands with molecular masses of 115, 119, and 125 kDa. hMR isoforms show maximal accumulation at 48 h post-infection with the recombinant baculovirus. Maximal aldosterone binding was detected at 24 h rather than at 48 h post-infection, suggesting that the assembly of hMR monomers into the nonactivated steroid-binding receptor complexes and/or their stability deteriorates after 24 h post-infection. It is estimated by specific aldosterone binding that 1.2 x 10(6) hMR molecules are expressed per Sf9 cell (equivalent to 7 pmol/mg of cytosolic protein) at 24 h post-infection. 5-Fold more receptor molecules/cell are expressed but not detected by steroid binding at 48 h post-infection as determined by immunoblot analysis. Using the MR-specific H10E anti-idiotypic monoclonal antibody, immunoprecipitation of cytosol from recombinant baculovirus-infected Sf9 cells pulse-labeled with 32Pi demonstrated for the first time that the recombinant hMR is highly phosphorylated. The hMR is expressed as 9-10 S oligomeric complexes (Stokes radii approximately 67-85 A) that are slightly heavier than the unactivated glucocorticoid receptor and can be converted to smaller 4 S receptor monomers (Stokes radii approximately 25-55 A) by elevated temperature, pH, and ionic strength. Unlike the glucocorticoid receptor, the oligomeric hMR complex can bind DNA-cellulose without prior activation. Finally, indirect immunofluorescence demonstrated that the hMR is expressed primarily as a cytoplasmic protein that can be induced to translocate to the nucleus upon treatment with hormone.  相似文献   

16.
Currently, gene disruption by homologous recombination in embryonic stem cells is only feasible in mice. To circumvent this problem, we silenced mineralocorticoid receptor (MR) expression by RNA interference in knockdown rats generated through lentiviral transgenesis. Analysis of the F1 progeny at 3 wk of age revealed strongly decreased MR levels. This was specific for the targeted gene and related to the abundance of the short interfering RNA. Reminiscent of MR knockout mice, the transgenic rats showed a reduced body weight, elevated serum aldosterone levels, increased plasma renin activity, and altered expression of MR target genes. Some of these effects correlated with the degree to which MR mRNA expression was reduced. Whereas disruption of the MR by gene targeting in mice leads to postnatal death, our strategy also allowed obtaining adult knockdown rats with defects in hormone and electrolyte homeostasis resembling pseudohypoaldosteronism. In conclusion, this is the first example of a human disease model based on RNA interference in rats.  相似文献   

17.
Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling.  相似文献   

18.
The mineralocorticoid aldosterone is a key regulator of blood pressure, fluid and electrolyte homeostasis, and acts via the mineralocorticoid receptor (MR). In recent years, an increasing number of studies revealed deleterious effects of aldosterone via its receptor. Especially in patients with primary hyperaldosteronism (PHA) a significant higher risk of developing cardiovascular comorbidities and comortalities was reported. Also renal insufficiency is clearly increased in patients with PHA indicating a role of aldosterone and the MR in the pathogenesis of renal injury. It has been shown that aldosterone in combination with an elevated salt intake, leads to renal inflammation, fibrosis, podocyte injury, and mesangial cell proliferation. This review focuses on the current knowledge of aldosterone effects in the kidney and highlights this topic from 2 perspectives: from clinical medicine and from experimental studies.  相似文献   

19.
Recent views suggest that long-term exposure to elevated aldosterone concentrations might result in cardiac, vascular, renal, and metabolic sequelae that occur independent of the blood pressure level. Indirect evidence of the untoward effects of aldosterone on the heart has been clearly established in clinical studies that have tested the effects of mineralocorticoid receptor antagonists in the treatment of systolic heart failure. As it has become clear in recent years, the interaction between aldosterone and the heart has to deal with additional actions of the hormone on specific cell types, cellular mechanisms, and molecules that are involved in regulation of tissue responses, leading to hypertrophy, remodeling, and fibrosis. The majority of these effects are mediated by activation of the mineralocorticoid receptors that are expressed in cardiomyocytes and cardiac fibroblasts, and mediate the genomic effects of the hormone. Evidence of interactions between aldosterone and the heart that occur independent of the renal effects of aldosterone, however, is not limited to the context of systolic heart failure and observations obtained in other disease states have led, together with findings of animal studies, to a better understanding of the potential benefits of aldosterone antagonists. In this narrative overview, we highlight the most recent findings that have been obtained in experimental animal models and in clinical conditions that include, in addition to systolic heart failure, primary aldosteronism, essential hypertension, diastolic heart failure, and arrhythmia.  相似文献   

20.
To investigate the role of sulfhydryl groups in the interaction of agonists and antagonists with the human mineralocorticoid receptor (hMR) the effect of methyl methanethiosulfonate (MMTS) on free and liganded-hMR was examined. hMR was expressed in insect cells (Sf9) using the baculovirus system. Treatment of cytosol with MMTS at 4°C inhibited the binding to hMR of both [3H]aldosterone and [3H]RU26752 (a synthetic aldosterone antagonist). At 4°C, the sensitivity to MMTS of the liganded-hMR complexes was dependent upon the nature of the ligands: agonists (aldosterone, corticosterone and cortisol) rendered the hMR resistant to MMTS, whereas antagonists (progesterone and RU26752) did not protect the receptor against MMTS inactivation. Analysis of the dose- and time-dependent effects of MMTS revealed that the free hMR and the RU26752-hMR complexes displayed a similar sensitivity to MMTS and that MMTS increased the dissociation of RU26752 from the hMR. At 4°C the aldosterone-hMR complexes were not affected by MMTS treatment, whereas at 20°C MMTS increased the dissociation of aldosterone from hMR. This effect was unrelated to the dissociation of hsp90 from hMR, because the sensitivity of the aldosterone-hMR complexes to MMTS remained unchanged after covalent linkage between hsp90 and the receptor. Our results suggest that agonists and antagonists modify the receptor conformation in distinct ways that render cysteine residues of the ligand binding domain more or less accessible to the MMTS action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号